
Tagonto Proje
tSilvia Bindelli, Claudio Cris
ione, Mauro Luigi DragoSeptember 25, 2007

Chapter 1Introdu
tion1.1 What is a TAG?A tag is a simple term (although it
ould be
omposed by more than a singleword) asso
iated with an information of any kind. They were devised for purposeof
lassi�
ation and information retrieval, a
ting as keywords whi
h
an be usedto identify resour
es. Ea
h resour
e
an have more than one tag asso
iated: intheir most
ommon uses, tags are used to make
lear both the
ontent andthe
ontext of an information. There is yet another use for tags: personaltagging. Personal tagging is a far more "natural" use
ase for tags: asso
iating"toberead", "tomorrow" and su
h transients (or less transients, like "read") tagsto information in a way that only makes sense for the tagger.Summing up, a TAG is a small (usually one word) pie
e of textual information,thus easily pro
essable, asso
iated with any other pie
e of information to spe
ifyits
ontent or
ontext, or de�ning some relative properties. TAG's informationis extremly unstru
tured and with little semanti
s, whereas one TAG
an havealmost any fa
tual semanti

ontent (as in the TAG "Cute"), or a
ontentdepending on the
ontext (as in the TAG "Killer", having
ompletely di�erentmeanings in the
ontest of a "Killer appli
ation" and of a Trial).1.2 TAG systems in the internetTag systems are now a
ore part of the internet and one of the most (ab)usedbuzzwords of the Web 2.0. Some 2.0 sites were built around the idea of tags,del.i
io.us () being the most famous: deli
ious is a "
ollaborative bookmarking"website, where sear
hes on the bookmarks database
an be made using tags astheir main driver. They both are also known as folksonomies, a
on
ept whi
hwill be explained in next se
tion.Most of the usage of tags on the net is a "
omposite" one, where tags areused inside a
omplex system: sites like YouTube and Fli
kr allow for sear
heson tags. 1

Often tools based on tag systems allow ea
h user to visualize in a "
loud" alltags she used, highlighting with a bolder font the more frequent ones. This waythe user
an qui
kly rea
h all the information she tagged with a given keyword,and
an immediately view
ontents more interesting to her. Moreover, this wayof organizing tags suggests new words for her sear
hes. An example of tag
loudis shown in �gure 1.1.
Figure 1.1: Fli
kr Tag CloudPersonal tags Personal tags are getting more and more popular on the inter-net, due to appli
ations allowing the storage of personal tags lo
ally and theirasso
iation with any resour
e (like tagging �le systems, mail tagging systemsand so on). While this is a growing area, it must be noted that personal tagsare usually not shared with others, and
annot be made sense of by anyone butthe tagger.1.3 Folksonomies"Folksonomy" is de�ned as the pra
ti
e of using tags in a
ollaborative way toannotate and
ategorize
ontents. The same
on
ept is also known as "so
ialtagging", but "folksonomy" better underlines the strong relationship to people:they imply metadata are
reated by
ontents' users and
reators, and usually
onsist of a vo
abolary familiar to them. This allows for information to be easiersear
hable and navigable.The term "folksonomy"
omes from the union of "folk" and "taxonomy",the latter being a subje
t indexing system.One of the advantages brought by folksonomies is the empowerment of infor-mation retrieval
apabilities of ea
h user. Ea
h user navigating in a tag systemis able to view tag set of other users. This way she may �nd a user annotat-ing
ontents in a way that makes sense to her too, and through this user's tagdis
over new related
ontent. Moreover, the fa
t itself that a do
ument is iden-ti�ed in a sear
h by keywords assigned to them by users make it easier for it tobe found, be
ause the sear
h will take pla
e in a vo
abulary well known to thesear
her.Folksonomies represent a very low
ost way to add metadata to
ontents,making them more easily available to men and ma
hines. But the metadatathey allow for are external, in
ontrast with those usally provided by standardslike the Dublin
ore. This implies that there is less
ontrol on their stru
tureand
orre
tness.Indeed, folksonomies are often
riti
ized be
ause of their la
k of terminlogi
al
ontrol, being freely developed by users, without the support of a shared and
ontrolled vo
abulary. Moreover, tags are not inserted in a logi
al stru
turewhi
h states obje
ts and relation among them.2

1.4 Tagonto support to FolksonomiesTagonto's pla
e in the
ontext of folksonomies lo
ates exa
tly here: Tagonto'spurpose is to over
ome problems whi
h arise form the la
k of an underlyingstru
ture exploiting all the help an ontology
an give. Mapping tags onto on-tology
on
epts allows for supplying a stru
ture, improving their usefulness byo�ering related
on
epts (and with them related tags and then
ontents) when asear
h for a keyword takes pla
e. This way both re
all and pre
ision get better,as explain in reserved se
tion.Tagonto then �nds its
ollo
ation inside the idea of expanding folksonomieswith ontologies.1.5 State of the artIn this se
tion we're o�ering a qui
k overview of what has already been donein the �eld of intera
tion between tags and ontologies. On the other side, we'renot going to analyze the �eld of tags and of ontologies separately, be
ause mu
hhas already been written about that.What is
lear is that not mu
h work has been done till now in this area.Only a few e�orts,
oming out in the last months, show the interest that isemerging about it. People is now understanding how useful it would be todevelop ontologies inside the
ontext of Web 2.0, and some works are movingtowards this dire
tion.1.5.1 Im WissensnetzIm Wissensnetz is an example of trying to �nd a
ollo
ation for ontologies inWeb 2.0.The problem it tries to solve is the developement of ontologies: at the mo-ment there isn't a strong parte
ipation of users, who should be the more in-terested in them. But they are devoloped by models' experts, who don't knowmu
h about the knowledge domain they refer to. This seems quite far fromwhat Tagonto is meant to do, as we will see later in this do
ument.SOBOLEO SOBOLEO (SO
ial BOokmarking and Lightweight Engineeringof Ontologies) is a tool, developed within the Im Wissensnetz proje
t, whi
hallows for tagging resour
es in the web using ontology
on
epts. It also lets itsusers to intera
t with the ontology, modifying the relations between
on
epts,their label and so on. It also has browsing features, whi
h starting from
on-
epts in the ontology lead the users to resour
es in the web tagged with thegiven
on
ept. SOBOLEO also shows resour
es
ontaining in their text a givensear
hed term, just like any other sear
h engine.SOBOLEO o�ers fun
tionalities far di�erent from Tagonto's ones. In someway, we
ould say that it o�ers the "opposite" path than the one o�ered byTagonto, whi
h instead lets to map tags onto ontology
on
epts.However, it seems an interesting point of view about how ontologies andtag-based syestems
ould usefully intera
t.
3

Chapter 2TagontoLib2.1 Introdu
tionTagontoLib is a java library, developed as a part of the Tagonto proje
t, ex-posing fa
ilities to map a tag on one or more
on
epts of a spe
i�ed ontology.Mapping a tag onto a
on
ept is not a trivial task. The natural language isby itself a
omplex obje
t to analyze in an automati
 fashion, espe
ially sin
ewords
an assume di�erent meanings a

ording to the
ontext in whi
h they areused. That's why we had to develop algorithms to generate the possible mat
hesinvolving both synta
ti
 and semanti

he
ks. Furthermore, the need of doingsome ontology reasoning and the stri
t performan
e requirements imposed bythe ne
essity of working online (to serve real-time requests of users) lead us todevelop a
omplex ar
hite
ture we will explain in the following
hapter.2.2 TheoryBefore des
ribing in details the ar
hite
ture of the library and how it works wehave to de�ne the theory that lies behind the task of mapping a tag onto a
on
ept.2.2.1 The Con
ept of MappingThe main task of the Tagonto Lib, as we said before, is to map a tag on oneor more
on
epts of a spe
i�ed ontology, but until now we have not de�ned indetail what is a mapping. From a theori
al point of view, a mapping
an bede�ned as a relationship between a tag and a
on
ept of an ontology. Obviously,sin
e the natural language is ambiguous and the semanti
 of words depends onthe
ontext in whi
h they are used, the multipli
ity of that relationship is manyto many, i.e. a tag
an be mat
hed onto many
on
epts and a
on
ept
an bemat
hed onto many tags (�g. 2.1). In addition we must also spe
ify what wemean using the terms tag and
on
ept, in other words what are the sets ontowhi
h the mapping relationship applies. With the term tag we mean a ve
torof
hara
ters of any size, i.e. any word. The spe
i�
ation of
on
ept instead isslightly more
ompli
ated, sin
e by that term we mean any named
on
ept in an4

ontology (i.e.
on
epts that have been de
lared with a URI) and not anonymousones (�g. 2.2).

Figure 2.1: Multiple possible mappings

Figure 2.2: Named Vs Anonymous
on
eptsThe
onsequen
es of this
hoi
e, imposed by the mining te
hnique we useto generate the mat
hes, is that the set of
on
epts against whi
h a tag
anbe mapped is smaller than the set of all the
on
epts de
lared in an ontology.However, we think that this limitation is not so
riti
al, sin
e this library wasdeveloped for a user-
entri
 proje
t and there are few users with the appropri-ate knowledge to understand a
omplex
on
ept de�nition (sin
e anonymous
on
epts have no name, the only way to give a des
ription of the
on
ept is toshow its de�nition). Anyway, one of the weaknesses of this assumption is thatnames given to
on
epts are des
riptive, i.e. the name of a
on
ept summarizesthe
on
ept des
ription, but this depends on who
reated the ontology and falls5

outside this proje
t.With the de�nition of mapping we have given so far, as we have remarkedwhen talking about multipli
ity, a tag
an be mapped onto one or more
on
eptsand vi
e versa, but we have not de�ned what lets us distinguish between di�erentmappings and, most important, whi
h ones are better than the others. Whatlets us a

oplish this task is the signi�
an
e of a mapping (i.e. the weightassigned to the relationship, �g. 2.3). We will see in next
hapter how thoseweights are
al
ulated.

Figure 2.3: Multiple possible mappings with di�erent weights2.2.2 Mapping GenerationTo generate mappings, both relationship tuples and their signi�
an
e, TagontoLibuses two di�erent types of heuristi
s:� Generative Heuristi
sTheir task is, given a tag and and an ontology, to generate the mostsigni�
ative mappings a

ording to some metri
s.� Choosing Heuristi
sTheir task is, given a set of mappings and an ontology, to modify thesigni�
an
e of the given mappings a

ording to some metri
s.These two heuristi
s are then
ombined in a two step algorithm as shown in�g.2.4Anyway, until now we have not spe
i�ed how these heuristi
s really works,i.e. what are the metri
s used. Mainly, we
an divide metri
s in two
ategories: � Synta
ti
 Metri
sThese metri
s use only synta
ti
 information to mat
h a tag against a
on
ept. This means that only the name of the
on
ept and the tagare
onsidered for the mat
h, nor the
ontext in whi
h the tag was usedneither semanti
 information residing in the ontology de�nition. Examplesof these metri
s are the usual text
omparison metri
s used in data mining,su
h as Levenshtein, Ja

ard or Tanimoto metri
s.6

Figure 2.4: Main Algorithm� Semanti
 Metri
sThese metri
s use both synta
ti
 and semanti
 information to mat
h atag againt a
on
ept. The way we try to infer the semanti
 informationdepends on the parti
ular method we adopt. For example, when usingWordNet, we use an english vo
abulary to sear
h for synonims, hyponimsand hypernims of a parti
ular tag. Another example is the use of Googleto sear
h for the right
ontext for a tag (we will se later how it works indetails).So far, we
an
ategorize the methods we use to
reate mappings in a twospa
e environment (table 2.2.2):Synta
ti
 Semati
Generative Exa
t Mat
h Wordnet SimilarityLevenshtein Mat
hJa

ard Mat
hGoogle Noise Mat
hChoosing Max Chooser Links ChooserThreshold Chooser Friends ChooserGoogleChooserTable 2.1: Heuristi
s
ategorization.We will des
ribe in details all these heuristi
s and how they are implementedin the ar
hite
ture se
tion.2.3 Ar
hite
tureThe ar
hite
ture of this library was developed keeping in mind all the require-ments expressed before and to make easy extending it to implement new fea-tures. At a high level of abstra
tion, Tagonto Lib has three main
omponents(�g 2.5)The Mapping Component
onstitutes the
ore of the library, while the othertwo
omponents just expose fa
ilities needed by the main
omponent to a

om-plish its task in an eÆ
ient manner. 7

Figure 2.5: Main Components2.4 The Mapping ComponentThe main task of the Mapping Component is, given a tag and an OWL ontology,to generate all the possible and signi�
ant mapping between the tag and oneof the
on
epts of the ontology. The most important
lasses belonging to this
omponent are shown in �g. 2.5.

Figure 2.6: Mapping Component Main ClassesFrom a high level of abstra
tion we
an de�ne the main elements in this way: � IMat
hPluginthe implementation of a mapping heuristi
� IMapperthe implementation of a mapping strategy, i.e. the spe
i�
 algorithmwe use to generate mappings. In other words, a mapping strategy is a
olle
tion of mapping heuristi
s and de�nes how we
ombine them, i.e.whi
h is the order the plugins are
alled and how we merge their results.8

Strategies StandardGreedyInstan
e
Heuristi
s Ca
hed Mat
hExa
t Mat
hLevenshtein Mat
hJa

ard Mat
hGoogle Noise Mat
hWordnet SimilarityLink
hooserGoogle
hooserThreshold
hooserMax
hooserTable 2.2: Implemented Mapping Strategies and Heuristi
sAs show in �gure 2.6, we provide 3 main mapping strategies and 11 mappingheuristi
s.In the following se
tion we will des
ribe all of them in detail.2.4.1 String Mat
h PluginsWithin this
ategory we group all the plugins that generate a mapping using onlysynta
ti
 information and that spe
i�
ally use only string
omparison metri
sto generate the best mappings. Under this
ategory we
an list :� Exa
t Mat
hDoes a string
omparison ignoring
ase between the spe
i�ed tag and thename of every
on
ept de
lared in the ontology. If the two strings mat
hes,a new mapping is generated with signi�
an
e 1.� Ja

ard Mat
hDoes a string
omparison using the Ja

ard distan
e measure between thespe
i�ed tag and the name of every
on
ept de
lared in the ontology.� Levenshtein Mat
hDoes a string
omparison using the Levenshtein distan
e measure betweenthe spe
i�ed tag and the name of every
on
ept de
lared in the ontology.2.4.2 Ca
hed Mat
hThis plugin just queries the Tagonto
a
her (we will des
ribe it in the followingse
tions)
he
king if a mapping for this tag has been already generated. Theneed for this fun
tionality has been imposed by the stri
t perfoman
e requiredby an online-use.

9

2.4.3 Wordnet Similarity PluginThis plugin uses a
omponent taken dire
tly from the XSom proje
t. All it doesis to invoke the imported
omponent as many times as the number of
on
eptsde
lared in the ontology. Then what the imported
omponent does for everyinvo
ation is tokenizing the tag and the
on
ept if possible, using wordnet to �ndsynonims, hyperonims and hyponims and �nally
omparing the tag string andthe found words with Ja

ard and Levenshtein metri
s. For further and moredetailed information on the
omponent imported from XSom see the XSomdo
umentation.2.4.4 Google Noise Mat
hThis plugin is not really a mapping plugin, sin
e it does not generate or modi�esany mapping. We
an de�ne it as a fa
ility for mapping, sin
e it's task is tryingto
orre
t some misspellings with the use of Google. Basi
ally, what it does issear
hing with google the tag and analyzing the response page, sear
hing for aMaybe Did You Mean suggestion from the sear
h engine. If a di�erent word hasbeen suggested, it
al
ulates the noisyness of the original tag
omparing it withthe word suggested by google and returns both as a result. Then the invokingmapper, a

ording to the strategy it realizes and the noisyness
al
ulated, de-
ides to repeat all the mapping pro
ess for the new tag returned by google ornot.2.4.5 Max and Threshold ChoosersThe task of these plugins is modifying a
olle
tion of mappings. The max
hooser �nds the highest mapping signi�
an
e in the
olle
tion and removes allthe entries having a lower value. The threshold
hooser instead removes fromthe
olle
tion all the mappings having a signi�
an
e lower than the spe
i�edthreshold.2.4.6 Friends ChooserThis plugin uses
orrelated tags and semanti
 informations derived from theontology to disambiguate mappings. The �rst step this
hooser takes is askingto TagontoNet servi
es the tags
orrelated to the original tag and mappingevery retrieved one with a Greedy strategy. Then for every original mapping,it modi�es the signi�
an
e using as metri
s the linkness of the
on
ept ontowhi
h the tag was mat
hed in the original mapping with the
on
epts ontowhi
h
orrelated tags were mat
hed (see �g.2.7 and �g.2.8). In other words,the more the
on
ept onto whi
h the original tag is mat
hed is
onne
ted to
on
epts mapping
orrelated tags, the more the signi�
an
e is raised and vi
eversa. The theori
al basis that lies behind this heuristi
 is that if a mapping if
orre
t (i.e. mat
hes the tag onto the
orre
t
on
ept) then the
on
ept mustbe
onne
ted to
on
epts mapping
orrelated tags (i.e. there must be ontologyproperties having as range the original
on
ept and as domain the
orrelated
on
ept, and vi
e versa).safdasdf 10

Figure 2.7: Mapping before
orrelated analysis

Figure 2.8: Mapping after
orrelated analysis2.4.7 Google ChooserThis plugin uses Google sear
h and semanti
 information derived from the on-tology to disambiguate mappings. Essentially it a
ts the same as the FriendsChooser, the only di�eren
e is in the way it retrieves
orrelated words. Insteadof invoking TagontoNet servi
es and so retrieving
orrelated tags, this
hooseruses the tag as a sear
h query using Google and analyzes the �rst N results (i.e.the N html pages with the highest rank a

ording to Google sear
h metri
s).How the analysis of these pages is done depends on the
ontent of the page. Ifin the header of the html page the plugin �nds the keywords meta information,it uses this list as the
orrelated words, otherwise a mining analysis is done onthe page
ontent (i.e. �rst removing all html tags, then using text mining and11

indexing te
hniques to extra
t the most representative words).2.4.8 Greedy MapperThe Greedy mapper implements a greedy strategy for mapping, i.e. the algo-rithm terminates in only one pass. This means that the Greedy strategy onlyuses a subset of the possible plugins, in parti
ular only synta
ti
 plugins andthe wordnet plugin. Heuristi
s using information embedded in the ontology(e.g. Friends Chooser and Google Chooser) are not embedded in this strategysin
e they need reasoning support, i.e. the
ompletion time is too high for thestrategy to be eÆ
ient. This mapper has been developed to eÆ
iently map atag onto a
on
ept, and is used by other strategies when
ollateral mappingsare needed to exe
ute a parti
ular heuristi
s (e.g. Google Chooser or FriendsChooser).2.4.9 Instan
e MapperThe instan
e mapper uses informations derived from instan
es of
on
epts togenerate mappings. Sin
e the standard behaviour of TagontoLib is to
onsideronly
on
epts (their name and the semanti
 information that
an be inferredfrom the ontology), we had to
reate this new mapper to take into a

ount alsoinstan
es. When this mapper is invoked, it uses synta
ti
 heuristi
s (at thetime of writing it uses only string
omparison metri
s sin
e instan
es
an beseveral and performa
e would be degradated) to
he
k wether or not the tag
an be mat
hed onto one or more instan
es. If mat
hes with high signi�
an
eare found, for ea
h mat
h a new mapping is generated mapping the spe
i�edtag onto the dire
t
on
ept (the most spe
i�

lass the invidual is an instan
e).In other words, what this strategy does is not mapping a tag onto an individual,but mapping the tag onto the
lass whose the instan
e is an individual.2.4.10 Standard MapperThe Standard mapper realizes a
omplete strategy for mapping, all the heuristi
swe de�ned before are used. The �rst step of this mapper is invoking the greedymapper to obtain a temporary mapping for the tag. Then it uses the instan
emapper to generate new
andidate mappings and �nally the Google Chooserand the Friends Chooser to modify the signi�
an
e of the greedy mapping asdes
ribed before.2.5 The Ca
hing ComponentSin
e one of the most important requirements for TagontoLib is being eÆ
ientand suitable to be used in an online fashion, the Ca
hing
omponent holds anextremely important role. The task of this
omponent is not only
a
hing all themappings generated (not only the one generated for an expli
it request but also
ollateral ones, e.g. mappings for friend tags or Google friends) but also
a
hinginformation about loaded ontologies. Sin
e semanti
 heuristi
s use informationthat
an be inferred from the ontology spe
i�ed for the mapping and ontologyreasoning
an be pretty slow, we had to pre
ompute many of the results needed12

by the heuristi
s at ontology loading time. Using this tri
k we
an save mu
h
omputation time during online-use, i.e. when TagontoLib re
eives a request tomap a tag. At the time of writing, the
a
hing
omponent uses a Jdb
 end pointto store ontology informations and both an RDF enpoint and a Jdb
 endpointto store mapping information (�g.2.9). However, the jdb
 endpoint holds a moreimportant role if
ompared to the RDF endpoint, sin
e the RDF enpoint is justa ba
kup
opy of the mappings and it's not used to read
a
hed information forperforman
e reasons.

Figure 2.9: Ca
hing Component ar
hite
tureSin
e the information stored about the ontology are a lot, the table 2.5des
ribes in detail what kind of information every database table keeps :2.6 The Communi
ation ComponentThe
ommuni
ation
omponent was developed to enable the use of TagontoLibwithout a

essing it with java. At the time of writing, the
ommuni
ation
omponent realizes an Http proxy that enables the use of the main features ofTagontoLib. The
ommuni
ation proto
ol implemented is based of the RESTparadigm, for more details on how to
all TagontoLib servi
es and the formatof the response see the internal do
umentation of TagontoLib avaible inside thedistribution.
13

Table Information Storedontologies keeps the list of ontologies loaded into thesystem and information about the last timeontology information was refreshedontology
on
epts keeps the list of all named
on
epts de�nedin the loaded ontologiesontology de
lared properties keeps the list of all named propertied de-�ned in loaded ontologiesontology properties keeps statisti
s about properties, i.e. link-ness of ontology
on
eptsrea
hable instan
e keeps information about individuals rea
h-able for a spe
i�ed named
on
ept andpropertysub
lass of keeps information about
on
ept hierar
hyfor loaded ontologiesdomain range keeps domain and range information forontology propertiesinstan
es keeps the list of all instan
es of every
on-
ept de
lared in loaded ontologiesmappings keeps the list of all mapping generatedmapped by keeps information about whi
h strategywas used to generate a mapping.Table 2.3: Database Tables

14

Chapter 3TagontoNET3.1 TagontoNET - Tag retrieval engineTagontoNET (TNET from now on) is a modular and plugin-based softwarefor the intera
tion with tag systems on the internet. TNET o�ers two mainservi
es: a sear
h-engine, able to retrieve resour
es asso
iated with a giventag and a Friend-fet
her, able to retrieve tags often asso
iated with the sameresour
e on a given tag.It's not possibile to give a general overview of these methods, sin
e theirinternals are
ompletely di�erent for ea
h plugin, but we may sum up the statusof the present development. Currently, the plugins powering the sear
h engineare using at least three di�erent methods:� API
alls, where available.� RSS feeds, where available.� S
raping: web pages are fet
hed and parsed using regular expressions toobtain needed informations.While most API
alls will return tagged
ontents a

ording to their rele-van
e or popularity, it's hard to do the same things with s
raping, and almostimpossibile with RSS feeds.Tag friends are obtained in a very similar fashion: either the APIs of the 2.0website o�er a proper method or webpages are parsed to retrieve tags. Eitherway, we were not able to obtain proper mathemati
al data to exe
ute statisti
alanalysis.3.1.1 Tag representation systemMost systems use an internal representation of tags where every tag is a singletuple in the form of <TAG, RESOURCE, USER>. This form is suitable forownership queries and allows for easy resear
h in the database.It's easy to see how the USER �eld
an be an additional information sour
eable to further enhan
e the semanti
 value of a tag: the same tag might havevarious meaning where used by di�erent people, due to many reasons (like lan-guage di�eren
es, ambiguities, even irony).15

While this is true on a single system, where the user is
learly identi�ed andtra
ked, it's diÆ
ult to have the same idea implemented in an entirely di�erentsetting as TagontoNET.During the design stage of TNET, we evaluated the possibility of takinginto a

ount both the TAG and the tagging user, assigning weights a

ordingto some heuristi
s yet to de�ne. This idea was then abandoned due to two mainproblems:� Some sites supporting tags do not store tagger's informations on theirdatabase, or the data are not a

essible from outside. This would have
aused a mismat
h between sites supporting user's identi�
ation and thoseunsupporting it.� It's not possible to tra
k the user between di�erent systems - while someheuristi
s
an be inferred, as the ni
kname and the domains of the taggedresour
es, it's not likely they would a
hieve good results. This wouldgreatly redu
e the uselfuness of the information in the intended task.TNET represents ea
h tag as a simple string where the asso
iated systems areproperties of the given string, not identi�ers. The internal PHP representationis a
lass serializable as <TAG, SYSTEMS>, thus allowing for easy navigation.3.1.2 Ar
hite
tureTNET
an be divided, from an high design standpoint, into three main parts.1. A PHP library endpoint, able to o�er its servi
es through simple methodinvo
ations.2. A RESTful web servi
e endpoint.3. A plugin system, where new plugins
an easily be loaded at runtime.The plugin systemTNET's plugin system is as simple as powerful: ea
h plugin is
omposed by tworequired �les and an arbitrary number of support �les. The two required �lesare � The
on�g.php �le, used to set ea
h and everything
on�g value neededby the plugin.� The manifest.php �le,
ontaining the Plugin
lass.Con�g The
on�g �le has to in
lude at the very least an Unique Number,identifying the plugin, and a set of basi
 information about the plugin. The
on�g �le
an then in
lude any needed
on�guration like API key, usernameand su
h.
16

PluginManager+getResources_AP()+getResources(pluginname:String)+getRelatedTags_AP()+getRelatedTags(pluginname:string)TNETLib+getResourcesForTag()+getRelatedTags()+getPluginList() Plugin2+Nome:string+URL:string+Logo:string+getResourcesForTag()+getServices()
RESTendpoint+ListPlugins()+GetFriends()+GetResources() Plugin1+Nome:string+URL:string+Logo:string+getResourcesForTag()+getServices()+getRelatedTags()

Figure 3.1: High-level ar
hite
ture diagramManifest The manifest �le
ontains the Plugin
lass, whi
h in turn has toextend the
lass TagontoNetPlugin. The only needed instru
tions external tothe Class de�nitions are the in
lusions of the relative
on�g.php �le and of anyneeded libraries, plus the invo
ation of the stati
 method of PluginManagerplugin subs
ribe, using as a parameter the plugin
lass' name.Class'
onstru
tor has to setup the
lass properly, and it's the only requiredmethod along with getServi
es(), whi
h will return an Human readable repre-sentation of the servi
es o�ered by the plugin.It's important to stress how plugin's
ode
ould theori
ally in
lude any lan-guage and business logi
, from using external webservi
es to running system
ommands. Thus, it's
ru
ial for the developer to take into a

ount the maxi-mum exe
ution time and memory limits of the s
ript: sin
e all the plugins aregoing to be a
tivated on the same run, resour
es will have to be shared. Dueto the inability of PHP to handle threads, time is an important fa
tor whenexe
uting a plugin: this is why methods for querying just one plugin have beendeveloped. Anyway, during the exe
ution of a getRelated or GetFriends query,most of the times all the plugins will be a
tivated (as in the
ase of TagontoLib)sin
e the invoker has not a priori knowledge of the available plugins: extra
arehas to be taken in the
oding of getFriends methods.To o�er a servi
e, a plugin has to implement one of the methods des
ribed inthe TagontoNetPlugin, with the
orre
t returning type. Note that, sin
e PHPis not a strongly-typed language, type
onsisten
y has to be
he
ked by thedeveloper. On
e the method has been implemented, the PluginManager
lasswill be able to dete
t it and use the plugin while answering a query for the givenservi
e. On
e a query has been performed, plugins' results will be merged intoa single result set and returned in a stru
tured form (if TNET has been usedas a PHP library) or as an XML do
ument for the REST interfa
e. See theWebServi
e interfa
e for more details.RESTful endpointThe REST interfa
e is not a
tually a full REST implmentation, sin
e it's notfollowing the resour
e based paradigm: we are using the REST to des
ribea simple web servi
e usable without
omplex SOAP methods and without aWSDL des
ription.Retrieving tagged
ontent Tagged
ontents
an be retrieved using the Ge-tResour
es method. The result set will be organized in an array of Resour
es,17

where every plugin is a Resour
e,
ontaining basi
 resour
e-related informationand an array of Results. Ea
h Result is a tagged
ontent,
omplete with its ownurl, title, des
ription and shown
ontent. Url and shown
ontent may or maynot be di�erent, a

ordingly to the appli
ation logi
 of the plugin generatingthe result: the URL is the link to the resour
e, while the Shown Content maybe any human readable representation of the resour
e. The Fli
kr plugin, forinstan
e, will return the full page link as the URL and a thumbnail version ofthe image as the shown
ontent. The Type of the Result serves this pre
isepurpose, and
an be used by the web servi
e's
onsumers to identify textual (0)or image-based (1)
ontent in the shown
ontent �eld. Management of the type�eld is
ompletely handled by plugins.Invo
ation To retrieve a tagged
ontent, the GetResour
es endpoint mustbe invoked using the GET method with the following parameters:� tag : the TAG for whi
h resour
es have to be retrievedpl : the plugin to be used. If pl is not submitted, all plugins will be usedResponse The response of the server is always an xml do
ument with thefollowing syntax :<tagonto requestSatisfied="true"><resour
e><name>$PluginName</name><url>$http://plugin.url</url><logo>$http://pluginlogourl.any</logo><results><result><url>$http://url.with.link.to.the.results</url><shown
ontent>$http://data.to.show.to.the.user</shown
ontent><title>$Title of the result</title><des
>$Some des
ription</des
><type>[1-2℄</type></result></results></resour
e></tagonto>Both the result and the resour
e elements
an be repeated as many times asneeded in the output.In
ase of an error, the XML will be the standard error reporting XMLdes
ribed in this do
ument.Friend Tags Friend tags will be retrieved using all available plugins by de-fault.Invo
ation To retrieve a tagged
ontent, the GetFriends endpoint mustbe invoked using the GET method with the following parameters:� tag : the TAG for whi
h resour
es have to be retrieved18

� pl : an optional plugin to use instead of performing a global sear
hResponse The response of the server is always an xml do
ument with thefollowing syntax :<tagonto requestSatisfied="true"><tag label="$friendtag"><sour
e>$PluginName</sour
e></tag></tagonto>Obviously the tag tag will be repeted for ea
h friend dis
overed. The sour
etag
an be used to provide weights for ea
h plugin or to power some heuristi
s.Tags are ordered on relevan
e - wherever possibile - and sour
e system.Error syntax Should TNET en
ounter any error during exe
ution, it willreport with an XML with this form:<tagonto requestSatisfied="false"><error type="errortype">Error message</error></tagonto>Type
an have values fatal, warning or normal or even be missing. The errormessage will be in human readable form.

19

Chapter 4Interfa
e4.1 Interfa
e OverviewThe
hoi
e of implementing a web interfa
e is due to two main reasons. One of
ourse is our desire to share our tool, making it easily a

essible to everyone.The other one is a matter of
oheren
e with respe
t to the aim of the tool itself:it seemed to us a natural
hoi
e the web for a tool whi
h deals with topi
s su
has ontologies and tags, the latter in parti
ular being one of the more popularfeatures of Web 2.0.The interfa
e has been designed as simple (and as readable) as possible. Itis mainly divided into two parts horizontally: the upper part is related to theweb sear
h engine tag-based (TagontoNET), the lower part is dedi
ated to theontology related results(Tagonto). Despite this division, there is only one sear
h�eld, on the right of the top menu bar. The idea underlying Tagonto is to exploitthe support of ontologies to emprove the sear
hes of people in the web, givinga stru
ture to something whi
h, for its nature, doesn't have one, like tag-basedsystems.The keyword typed in the sear
h �eld will be both sear
hed among tags inthe web and in the ontology. Let's see now in details the two interfa
e areas.4.1.1 Web results areaThe results of the sear
h in the web are shown in the top area. They areorganized in tabs, one for ea
h web site. As explained in other se
tions, Tagontosupports the sear
h in as many tag-based systems as the user prefers, beingdeveloped modularly. Ea
h new system
an be easily added to TagontoNET asa Plugin. The interfa
e re
e
ts this modularity through the use of tabs: everynew plugin will be shown in a new tab, with no need to
hange something inthe interfa
e.Results for ea
h site are loaded just after a tab has been sele
ted: we
hosenot to load them altogether be
ause it's a
omputationally expensive task and itwould have taken too mu
h time. Moving from tab to tab, part of the resour
estagged with the sear
hed keyword in that site will be shown. I said "part"be
ause we de
ided to redu
e the number of results shown: they would havebeen too many, making the page less readable.20

Figure 4.1: S
reenshot of the interfa
eThe results are shown in di�erent ways, depending on their nature. For tex-tual information, a link to the sour
e is shown, together with a short des
riptionwhen available. For pie
es of information from Fli
kr and Youtube, instead, asmall preview of the pi
ture (or video) is shown. The preview is itself a link tothe resour
e, and its title is shown with a tooltip text. The kind of
ontent isindi
ated by the Type of the Result (see se
tion about Plugins in TagontoNET).4.1.2 Ontology areaLet's observe now the lower part of the page. It o�ers fun
tionalities linked to on-tology navigation (or ontology "sur�ng", as we
alled that). Tagonto allows forthe loading of di�erent ontologies from the
on�guration side. The ontology usedin this implementation is the wines' one, available at http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine . When a keyword is sear
hed, a grey box will appearin this area. This box lets the user
hoose among the ontology
on
epts retrievedby the reasoner the
on
ept on whi
h to map the sear
hed tag. In other words,the
on
ept in the ontology that better maps the sear
hed keyword, from theuser's point of view. This box is
alled "disambiguator".On
e a
on
ept has been
hosen, it will be shown together with some infor-mation about it. In detail: the
on
ept's URI, the list of tags already mappedon that
on
ept, the list of instan
es of that
on
ept in the ontology. All thisinformation will be in
luded within a single box, with an orange border.Together with the box representing the
on
ept whi
h is the obje
t of themapping, a group of other similar boxes (but with grey border) will be shown,ea
h showing a
on
ept linked to the given one by a
ertain relationship in21

the ontology. These
on
epts are grouped in 3 ma
ro-boxes: Sub-Con
epts,Super-Con
epts and Related Con
epts.The name of ea
h
on
ept is a navigable link whi
h allows to navigatethrough the ontology:
li
king over the name of a related
on
ept, this willbe shown in an orange box together with its related
on
epts and so on.The information shown about the related
on
epts are similar to those shownfor the
urrent
on
ept, but they also present the name of the relation whi
h
onne
ts them to it.The list of tags related to ea
h
on
ept is navigable too. Cli
king over one ofthese tags a sear
h for it will start, both in the web and in the ontology.This feature parti
ularly enables the support of the ontology to the sear
h.The other tags mapped on the
hoosed
on
ept and those mapped on the relatedones
an suggest to the user how to emprove its sear
h, or a new dire
tion whereto develop it. Cli
king over this tag a new sear
h begins immediatly, with noother user a
tion.The istan
es' names are navigable too: they are treated as tags, and
li
kingover them a new sear
h will start, both in the web and the ontology.4.1.3 Personal areaLogging into the personal area through the blue box on the right, a registereduser will have one more fun
tionality available: she will be allowed to mapa sear
hed tag on an arbitrary ontology
on
ept, if none of those o�ered inthe disambiguator box satis�es her. In pra
ti
e, a link on the bottom of thedisambiguator box will open a new box
ontaining a list of all the
on
epts inthe ontology. A
li
k over one of them will map the tag on it. From then on,the tag will be
ounted among the others mapped on that
on
ept, and it willbe assigned a weight (just what happen with a traditional mapping, see se
tionabout ontology mapping).The login area is a really basi
 one. To register, the user has to enter a username and a password and then
li
k over the register button. From then on,she will be able to login typing them and
li
king over the Login button. Tologout, she will have to
li
k over the logout link.4.1.4 Con�guration sideThe
on�guration interfa
e has been devoleped to make Tagonto's deploymenteasier.Main page
ontains two link: one to set the ontology to be used, the otherone to
on�gure other properties of Tagonto, su
h as its databases.To load an ontology, its URI is required, together with the lo
ation of theend point of Tagonto where to
onne
t it.The
on�guration of the other Tagonto properties is guided through a listof �elds, and automati
ally generates a
on�guration �le.
22

searchForTag
user mapsTagonConcept
ViewResourcesaboutTagNavigateOntologyFIndnewtagsFigure 4.2: Interfa
e Use Case4.2 Implementation4.2.1 Used te
hnologiesTagonto being a web appli
ation, its interfa
e has been mainly developed inhtml, with the support of CSS stylesheets for graphi
al features.XSL stylesheets have been used too, to translate into html the results of theweb sear
h, whi
h are supplied in XML by TagontoNET.The server-side part of the interfa
e has been developed in PHP5, a re
e
tiveprogramming language. PHP5 allows obje
t-oriented programming, whi
h hasbeen widely used within the implementation.Another te
hnology used in the implementation of the interfa
e is AJAX.The
hoi
e of AJAX has been made to make the appli
ation qui
ker. As pre-viously said, both the ontology reasoner and the web sear
her are quite slow,dealing with very time-
onsuming tasks. To avoid the reload of the page atevery query of the user, AJAX has been introdu
ed, allowing the reload only ofthe pie
e of page a�e
ted by the a
tion.The use of ajax in pra
ti
e
onsists of the use of some javas
ript libraries(mainly prototype.js and gwidgets.js, the latter used to generate the tabs viewin the web results area). Using this approa
h, every
ontent of the appli
ationis shown within the same page (only the menu bar and the
on�guration partwill lead to di�erent pages).4.2.2 Interfa
e stru
tureEx
ept for the do
umentation pages and the
on�guration side, whi
h are de-veloped in a di�erent way and are ea
h in
luded in an indipendent folder (do
and
on�g), all the output of Tagonto is shown in the index page.Its stru
ture is given by divs, whi
h represent the "web" and the "ontology"part, as previously de�ned.The java fun
tions
alled by Tagonto on user input are all
olle
ted intagonto.js �le, in the js folder. js folder
ontains all the javas
ript �les, in
lud-23

ing the libraries used to obtain ajax e�e
ts: prototype.js, gwidgets.js, base.jsand e�e
ts.js. tagonto.js' fun
tions are
alled through "on
li
k" html attribute,while param are passed them through php ins
tru
tions when available fromthe appli
ation, or dire
tly through proper javas
ript methods when typed byuser.The shown output is put together in �les lo
ated in the ajax folder. Ea
hof them is invoked by the fun
tions in tagonto.js, whi
h pass them parametersusing the GET http method. Then php �les in ajax folder use methods andfun
tion made available by the other parts of Tagonto to show results.They intera
t mainly with TagontoNETREST for the web part, to get results
oming from the plugins, and with ReasoningManager and other php
lassesin
luded in the
lasses folder for what
on
erns the ontology part.In the
lasses folder, "manager"
lasses manage di�erent aspe
ts of the in-terfa
e, while those
lasses with a name whi
h refers to ontology are used torepresent di�erent elements of the ontology, where information about them arestore when they are re
eived by the engine.ReasoningManager o�ers two main servi
es, getCon
eptsByTag and map-TagOnCon
ept, respe
tively o�ering retrieving and mapping fun
tionalities.LoginManager o�ers servi
es related to the login panel, used to register anew user and to manage session of logged users.Sear
hManager o�ers servi
es related to the "web part" of tagonto.xslTranslator asso
iates the stylesheet ResultsRendererPhp in
uded in folderXSL.Other php
lasses, as said, represent element of the system, mainly ontologyelements.Lib folder
ontains web plugins, together with their manager (see se
tionabout plugins for further information about this part).

Figure 4.3: Interfa
e sequen
e diagram
24

Chapter 5Final
onsiderations5.1 Re
all and pre
isionMeasuring re
all and pre
ision of a folksonomy or tag-based system is not aneasy task: there are no training sets, no standard testing methodologies, nowidely a

epted expe
ted results.We thus
hose an heuristi
al approa
h to give at least a qualitative measureof the re
all and pre
ision performan
es of our appli
ation. As a
omparison, wehave taken a generi
 tag-powered web system with a tag driven sear
h engine.If we give for granted that su
h a system
an easily be in
luded in TagontoNETwith an ad-ho
 plugin, we see that Tagonto's pre
ision, if we provide just thisvery plugin,
annot be worse than the given system's, sin
e all the results wewould normally have from the system are in
luded in the result: this way wenow have a lower bound to the pre
ision of our software.While it's simple enough to set a minimum pre
ision, we
an only providequalitative assertions about the expe
ted in
rease in pre
ision. A good exampleto understand how Tagonto
an improve pre
ision is using the tag Wine for aresear
h. As a Tag wine has at least one homonym, a software produ
t whereWine stands for Wine Is Not an Emulator: sear
hing for wine in some tag basedsystems will result in
on
ents related to both meanings of the word. On theother hand, if we suppose Tagonto to be powered by an Ontology related tojust one of the meanings of wine - or otherwise able to resolve the homonymy
on
i
t as des
ribed before in this do
ument - the user will be provided withmore terms, tags or
on
epts, related to the tag Wine. This way, he will be ableto narrow down his sear
h, thus in
reasing the pre
ision of his query after onlya
ouple of iterations given no prior knowledge of the sear
h domain.While tag
louds, a very popular meaning of tag asso
iation, are able to pro-vide a servi
e somewhat similar, they la
k the semanti
 information an ontology
ontains and thus are unable to in
rease pre
ision in the same way.Re
all rate
an be analysed in a similar way. In the worst
ase, it will be thesame as the given tag system, but we expe
t signi�
ant improvements due tothe use of the ontology ba
kend and the aggregation of more plugins. While theuser
an navigate various plugin, thus enlarging the result domain, we expe
t the25

biggest improvement to
ame from the
on
ept-tag mappings stored in memoryand presented to the user: as in a semanti
 tag-
loud, a user
an easily �ndresour
es tagged with tags similar to its own, thus enhan
ing re
all.5.2 Performan
esIn previous
hapters we have dis
ussed performan
e issues for the TagontoLiband the TagontoNet
omponents. The reader might then wonder whether theseproblems do sum up, rendering the whole system so slow it
annot be a
tuallyused.While these
on
erns do apply in a produ
tion environment, this is not the
ase in a testing-level infrastru
ture. Tagonto is able to answer most requests,a

ording to the
omplexity of the reasoning involded, in no more than 15se
onds running on
ommon personal hardware. Timeouts on remote resour
esand the use of asyn
ronous methods do improve user experien
e and let theprodu
t be usable. If mapping has been already
a
hed, times
an be
ut downto about 5 se
onds, while ontology navigation
an be around 1 or 2 se
onds.This said, Tagonto should undergo a strong optimization and
ode
leaningto rea
h produ
tion-level: ontology based reasoning is still extremely expensivein term of
omputational resour
es, and the use of remote resour
es impliesnetwork imposed lags. From an ar
hite
ture standpoint, however, Tagonto
ans
ale very well to multiple server, its
omponent being de
oupled enough toreside on di�erent servers.

26

