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Abstract— We present a method to recognize the presence of
lung cancer in individuals by classifying the olfactory signal
acquired through an electronic nose based on an array of
MOS sensors. We analyzed the breath of 101 persons, of
which 58 as control and 43 suffering from different types
of lung cancer (primary and not) at different stages. In
order to find the components able to discriminate between
the two classes ‘healthy’ and ‘sick’ as best as possible and
to reduce the dimensionality of the problem, we extracted the
most significative features and projected them into a lower
dimensional space, using Non Parametric Linear Discriminant
Analysis. Finally, we used these features as input to several
supervised pattern classification techniques, based on different
k-nearest neighbors (k-NN) approaches (classic, modified and
Fuzzy k-NN), linear and quadratic discriminant classifiers and
on a feedforward artificial neural network (ANN). The observed
results, all validated using cross-validation, have been satisfac-
tory, achieving an accuracy of 92.6%, a sensitivity of 95.3%
and a specificity of 90.5%. These results put the electronic nose
as a valid implementation of lung cancer diagnostic technique,
being able to obtain excellent results with a non invasive, small,
low cost and very fast instrument.

I. INTRODUCTION

Nowadays the research on olfactory systems has become
very lively, most of all because of the multitude of applica-
tions in which it has been successfully used [1]. The olfactory
signal, as well as other signals perceived through human
senses, transports much more information than human beings
are able to perceive; an electronic nose is an instrument
that allows to acquire this kind of signal. An electronic
nose is composed by an array of electronic chemical sensors
with partial specificity and an appropriate pattern recognition
system able to recognize simple or complex odors [2]. In the
medical field, clinicians have always considered odor as a
fundamental information for the diagnosis, according to the
fundamental principle of clinical chemistry, namely the fact
that every pathology changes people chemical composition,
modifying the concentration of some chemicals in the human
body. For this reason an electronic nose could be used to
automatically analyze substances produced and emitted from
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the human body finding, in a rapid and non invasive way,
several diseases [3], [4].

This paper focuses on the diagnosis of lung cancer; it has
been demonstrated that this type of cancer alters the per-
centage of some volatile organic compounds (VOCs) present
in the human breath [5], [6], which may be considered as
markers of this disease. Whenever the breath of a healthy
person gives a different pattern than that of a sick one,
this difference could be detected by the electronic nose and
an appropriate pattern classification algorithm, without the
need for expensive techniques to extract VOCs (e.g., gas
chromatography). The main objective of this paper is to
demonstrate that it is possible to recognize individuals af-
fected by lung cancer, analyzing the olfactory signal of their
breath by the use of an electronic nose with an appropriate
classification algorithm.

II. FUNCTIONING OF THE ELECTRONIC NOSE

An electronic nose is an instrument able to detect and
recognize odors, namely the volatile organic compounds
present in an analyzed substance. It is composed of an array
of non specific electronic devices able to convert a physical
or chemical information into an electrical signal. Each sensor
reacts in a different way to the analyzed substance providing
multidimensional data that can be considered as an olfactory
blueprint of the substance itself. The output of an electronic
nose can be the detection of a specific substance, an estimate
of the concentration of the odor or some particular charac-
teristic of the odor that allows to associate it to a particular
class/situation.

An electronic nose consists in three principal components:
1) Gas Acquisition System
2) Pre-processing and Dimensionality Reduction
3) Classification Algorithm

In particular, the acquisition of the olfactory signal is done
through a sensor array that measures a given physical or
chemical quantity; the recorded data are then sent to a
processing system that reduces the impact of the noise and
extracts the most significative features from the signal. Once
the most representative characteristics are found, it is possible
to proceed with the analysis of the data, that, in this particular
case, consists of a pattern recognition algorithm.

Current types of electronic noses are different according to
the sensor technology used and, therefore, according to the
measured physical or chemical quantity. MOS sensors are
characterized by high sensitivity (in the order of parts per
billion ppb), low cost, high speed response and a relatively



Fig. 1. Example of a typical sensor response.

simple electronics. Considering that most of the VOCs mark-
ers of lung cancer are present in the diseased people’s breath
in very small quantities, varying from parts per million to
parts per billion, we have chosen to use this kind of sensors
rather than others. In particular, we used an array composed
of six MOS sensors (developed by SACMI s.c.), that react
to gases with a variation of resistance. The VOCs interact
with a doped semiconducting material deposited between
two metal contacts over a resistive heating element, which
operates from 200 ◦C to 400 ◦C. As a VOC passes over the
doped oxide material, the resistance between the two metal
contacts changes in proportion to the concentration of the
VOC. The registered signal corresponds to the change of
resistance through time produced by the gas flow [7].

In Figure 1 it is possible to see a typical response of a
MOS sensor. In particular, each measure consists of three
main phases:

1) Before: during this time the instrument inhales the
reference air, showing in its graph a relatively constant
curve;

2) During: it is the period in which the electronic nose
inhales the analyzed gas, producing a change of the
sensors’ resistance. It is the most important part of the
measurement because it contains informations about
how sensors react to the particular substance;

3) After: during this phase the instrument returns to the
reference line.

III. DATA PROCESSING AND DIMENSIONALITY
REDUCTION

The first computational phase, after the electronic nose has
acquired the olfactory signal, is pre-processing; its purpose
is to reduce the effect of humidity, to normalize the obtained
signal and to manipulate the baseline. The latter transforms
the sensor response w.r.t. its baseline (e.g., response to a ref-
erence analyte) for the purposes of contrast enhancement and
drift compensation [1]. In this particular case, the drift effects
were not so relevant and we noticed that the performance
with or without calibration were quite the same, probably
because the humidity correction partially solved also the
drift problem. In order to reduce the humidity impact, we
subtracted its correlation to the signal from the signal itself. It
is important to point out that also the humidity is susceptible
of the drift phenomenon and this is the reason why humidity
correction indirectly affects calibration. Normalization is
used to compensate for the scale difference between the
sensors in the array; for this reason we forced all sensors
to have zero mean and variance equal to 1.

After pre-processing we performed dimensionality reduc-
tion to extract only the most relevant information from the
signal. We reached these objectives using three different
techniques:

1) features extraction

2) features selection
3) features projection in a lower dimensional space

The first operation extracts those descriptors from the sen-
sors’ responses able to represent data characteristics in the
most efficient way. We computed 10 features, based on the
variation of resistance, the course of the curve, its derivative,
integral and Fast Fourier Transform (FFT). Some of these
features returned more than one value (like the FFT), for a
total of 39 descriptors for each measurement. Considering
that we used 6 sensors, each measure would be described by
234 descriptors. Therefore, the need for a feature selection.

Among all features it is necessary to find those that max-
imize the informative components and, thus, the accuracy of
the classifier. For this reason we applied the non-parametric
test of Mann-Whitney-Wilcoxon [8] with a significance level
equal to α = 0.0001 to select only discriminat descriptors.
The choice of using a non-parametric test instead of a
parametric one, is due to a previous analysis of the features
distribution and a Lilliefors test. In order to evaluate the
discriminative ability of the combination of more features,
we performed an Analysis of Variance (ANOVA) [8] and
several scatter plots.

Let define R(t) the curve representing the resistance
variation during the measurement and R0 the value of the
resistance at the beginning of the measurement (as indicated
in Figure 1), we found as the most discriminative features
between the two classes ‘healthy’ and ‘sick’:

• Delta: resistance change of sensors during measure-
ment:

δ = R0 −min(R(t)) (1)

• Classic: the ratio between the reference line and the
minimum value of resistance reached during the mea-
surement:

C = R0/ min(R(t)) (2)

• Relative Integral: calculated as:

I =
∫

R(t)/(t ·R0) (3)

• Phase Integral: the closed area determined by the plot
of the state graph of the measurement [9]:

x = R, y = dR/dt (4)

• Single Point: the minimum value of resistance reached
during the measurement.

S = min(R(t)) (5)

After feature selection we performed data projection: we
considered Principal Component Analysis (PCA) [10] and
Nonparametric Linear Discriminant Analysis (NPLDA) [11],
that is based on nonparametric extensions of commonly used
Fisher’s linear discriminant analysis [10]. PCA transforms
data in a linear way projecting features into the directions
with maximum variance. It is important to notice that PCA
does not consider category labels; this means that the dis-
carded directions could be exactly the most suitable for



the classification purpose. This limit can be overcome by
NPLDA, which looks for the projection able to maximize
differences between different classes and minimize those
intra-class. In particular, NPLDA removes the unimodal
gaussian assumption by computing the between scatter-
matrix Sb using local information and the k nearest neighbors
rule; as a result of this, the matrix Sb is full-rank, allowing
to extract more that c-1 features (where c is equal to the
number of considered classes) and the projections are able
to preserve the structure of the data more closely [11].
As evident from Figure 2, NPLDA is able to separate the
projected features more clearly than PCA, which plot shows
a more evident overlap of samples. This means that NPLDA
is more suitable, for the problem considered, in terms of
classification performance. Moreover, the plot and the ob-
tained eigenvalues clearly indicated that only one principal
component is needed.

IV. CLASSIFICATION

After the olfactory signal has been processed and after
extracting the most significative features, it has been possible
to perform classification. We considered three families of
classifiers:

1) Nearest Neighbors Classifiers (k-NN);
2) Linear and Quadratic Discriminant Function based

Classifiers (LD and QD);
3) Artificial Neural Network (ANN).

A. Nearest Neighbors

The basic idea of this simple and powerful algorithm is
to assign a sample to the class of the k closest samples
in the training set. This method is able to do a non linear
classification starting from a small number of samples. The
algorithm is based on a measure of the distance (in this case,
the Euclidean one) between the normalized features, and it
has been demonstrated [10], that the k-NN is formally a
non parametric approximation of the Maximum A Posteriori
MAP criterion. The asymptotic performance of this algo-
rithm, is almost optimum: with an infinite number of samples
and setting k=1, the minimum error is never higher than the
double of the Bayesian error (that is the theoretical lower
bound reachable) [12].

One of the most critical aspects of this method regards
the choice of parameter k with a limited number of samples:
if k is too large, then the problem is too much simplified
and the local information loses its relevance. On the other
hand, a too small k leads to a density estimation too sensitive
to outliers. For this reason, in addition to the classic k-
NN, we implemented two other versions of this technique:
the Modified k-NN and the Fuzzy k-NN. In the former, k
means the number of closest neighbors to look for (as in
the classic approach), but belonging all to the same class.
This dynamically modify the neighborhood according to the
noise in the dataset. Fuzzy k-NN, a variation of the classic
k-NN based on a Fuzzy logic approach [13], assigns a fuzzy
class membership to each sample and provides an output in a
fuzzy form. In particular, the membership value of unlabeled

sample x to ith class is influenced by the inverse of the
distances from neighbors and their class memberships:

µi(x) =

∑k
j=1 µij(‖x− xj‖)

−2
m−1∑k

j=1 (‖x− xj‖)
−2

m−1

(6)

where µij represents the membership of labeled sample
xj to the ith class. This value can be crisp or it can be
calculated according to a particular fuzzy rule: in this work
we defined a fuzzy triangular membership function with
maximum value at the average of the class and null outside
the minimum and maximum values of it. In this way, the
closer the sample j is to the average point of class i, the
closer its membership value µij will be to 1 and vice versa.
The parameter m determines how heavily the distance is
weighted when calculating each neighbor’s contribution to
the membership value [14]; we chose m = 2, but almost
the same error rates have been obtained on these data over
a wide range of values of m.

B. Discriminant Functions Classifier

Classification based on discriminant functions represents
a geometric approach in which the features space is divided
in c decision regions each one corresponding to a particular
class. The idea is to represent the classifier as a family of
discriminant functions gi(x) with only one output that should
minimize a certain cost function. We considered two types of
discriminant functions: the linear (LD) and the quadratic one
(QD). A classifier based on a linear discriminant function
divides the features space by planes and it is therefore
optimum when the problem is linearly separable. In any case,
this technique is able to lead to good performances also when
the problem is not linearly separable. We implemented the
Minimum Distance to Means (MDM) approach, in which
the representatives of each class have been calculated as
the mean value of samples belonging to that class. This
approach is very simple and lead to good generalization; the
drawback is that it compresses all information in only one
representative value. If the problem is not linearly separable,
a quadratic discrimination function could be more suitable,
as has also verified in this work.

C. Artificial Neural Network

Artificial Neural Networks (ANN) are non-linear statistical
modeling tools that can be used to model complex rela-
tionships between inputs and outputs or to find patterns in
data. It can be demonstrated that an ANN, given a sufficient
number of sigmoidal neurons in the hidden levels, is able
to approximate any non linear function on a compact set.
Moreover ANNs asymptotically (with an infinite number of
examples) approximate the a-posteriori probability as with
the Bayesian classifiers [15].

One of the main drawbacks of this method regards the
impossibility to decide a priori the best topology to use.
This choice has therefore been made through an empirical
approach. In particular, we chose to use a feedforward neural
network with one hidden layer, in which inputs are the first



Fig. 2. The result of dimensionality reduction through PCA on the left and NPLDA on the right.

principal component obtained by NPLDA and the output is
a single neuron assuming the value 1 if the presence of
the disease is detected and 0 otherwise. All neurons have
a sigmoidal function as activation function. The net has
been trained using the Resilient Backpropagation algorithm,
based on the gradient descent approach, in which only the
sign of the derivative is used to determine the direction
of the weights update [16]. This choice is due to the fact
that this algorithm was able to offer the best compromise
between the error on the validation and convergence. Finally,
we set the number of neurons in the hidden layer equal
to 3; this value has been obtained by training a set of
networks with increasing number of hidden neurons and
picking the smallest one with a good validation error. Since
ANN’s results depend on the values of the initialization, we
trained the net 20 times and we choose the best configuration
(according to the early stopping error) to evaluate the test set.

V. METHODOLOGY

The experiment has been developed within the Italian
MILD (Multicentric Italian Lung Detection) project, pro-
moted by the Istituto Nazionale Tumori, Italy. We analyzed
the breath of 101 volunteers, of which 58 healthy and 43
suffering from different types of lung cancer. All cases
were hospitalized at the Istituto Nazionale Tumori of Milan.
Among them, 23 have a primary lung cancer, while 20 of
them have different kinds of pulmonary metastasis. Control
people have no pulmonary disease and have negative chest
CT scan. The study has been approved from the Ethical
Committee of the Institute and we asked everybody to sign
an agreement for the participation to the study.

The breath acquisition has been made by inviting all
volunteers to blow into a nalophan bag of approximately
400cm3. Considering that the breath exhaled directly from
lung is contained only in the last part of exhalation, we
decided to consider only this portion of the breath. We used
a spirometer to evaluate each volunteer exhalation capacity
and, at the end of the exhalation, we diverted the flow into
the bag. Finally, the air contained in the bag has been input to
the electronic nose and analyzed. From each bag we took two
measures, obtaining a total of 202 measurements, of which
116 correspond to the breath of healthy people and 86 to
diseased ones.

The performance of the classifiers has been evaluated
through the obtained confusion matrices and performance
indexes; being ‘TruePositive’ (TP) a sick sample classified
as sick, ‘TrueNegative’ (TN) a healthy sample classified as
healthy, ‘FalsePositive’ (FP) a healthy sample classified as
sick and ‘FalseNegative’ (FN) a sick sample classified as
healthy we used:

• Accuracy (Non Error Rate NER): the probability of

doing a generic correct classification;

NER =
TP + TN

TP + FP + TN + FN
(7)

• Sensitivity (True Positive Rate TPR): the probability to
classify a person as sick when this is true;

TPR =
TP

TP + FN
(8)

• Specificity (True Negative Rate TNR): the probability
of classifying a person as healthy when this is true;

TNR =
TN

TN + FP
(9)

• Precision w.r.t. diseased people (PRECPOS): the
probability that, having assigned a sample to the class
of diseased people, it actually belongs to that class.

PRECPOS =
TP

TP + FP
(10)

• Precision w.r.t. healthy people (PRECNEG): the
probability that, having assigned a sample to the class
of healthy people, it actually belongs to that class.

PRECNEG =
TN

TN + FN
(11)

To obtain indexes able to describe in a reliable way the
performances of the algorithms, it is necessary to evaluate
these parameters on new and unknown data, validating the
obtained results. Considering the not so big dimension of
population and that for every person we had two samples,
we opted for a modified Leave-One-Out approach; each test
set is composed by the pair of measurements corresponding
to the same person, instead of a single measure as would be
in the normal Leave-One-Out method. Doing this way, we
avoided that one of these two measures could belong to the
training set, while using the other in the test set.

In order to deeply understand the relevance of the obtained
performance indexes, we calculated the corresponding con-
fidence intervals, which lower and upper bounds are defined
as:

X̄ − tα
2

σ√
n
≤ µx ≤ X̄ + tα

2

σ√
n

(12)

where X̄ is the registered index value, n is the number of
the degrees of freedom, σ is the standard deviation and tα

2

is the quantile of the t-student distribution corresponding to
the degrees of freedom-1 of the problem.

VI. RESULTS

All implemented algorithms have demonstrated a good
ability to discriminate the two classes ‘healthy’ and ‘sick’.
Performance indexes are reported in Table I, where we con-
sidered the first principal component obtained from NPLDA.
The first consideration regards the similarity of Modified
and Classic k-NN: results are strongly comparable, but a



TABLE I
PERFORMANCE INDEXES AND CORRESPONDING CONFIDENCE INTERVALS (CI=95%) OBTAINED FROM CONSIDERED ALGORITHMS. FEATURES HAVE

BEEN PREVIOUSLY PROJECTED BY NPLDA AND ONLY THE FIRST PRINCIPAL COMPONENT HAS BEEN KEPT FOR CLASSIFCIATION. FOR k-NN
TECHNIQUES, WE CONSIDERED K=1,3,5,9,101; FOR CLASSIC AND MODIFIED k-NN WE SHOW THE BEST ACHIEVED RESULTS (WHEN k=9). ON THE

CONTRARY, FUZZY k-NN LED TO THE SAME RESULTS INDEPENDENTLY FROM k’S VALUES.

Classifier NER TPR TNR PRECPOS PRECNEG

Classic 9-NN 90.1% 89.5% 90.5% 87.5% 92.1%
Confidence Interval [85.7-94.5] [85.3-93.8] [86.0-95.0] [81.6-93.4] [86.8-97.4]

Modified 9-NN 91.1% 91.9% 90.5% 87.8% 93.7%
Confidence Interval [86.8-95.4] [87.9-95.9] [86.0-95.0] [81.9-93.7] [89.1-98.4]

Fuzzy k-NN 92.6% 95.3% 90.5% 88.2% 96.3%
Confidence Interval [88.5-96.7] [91.8-98.9] [86.0-95.0] [82.3-94.1] [93.2-99.4]

LD 89.6% 96.5% 84.5% 82.2% 97.0%
Confidence Interval [85.0-94.2] [93.7-99.3] [79.1-89.9] [75.2-89.1] [93.9-100]

QD 92.6% 95.3% 90.5% 88.2% 96.3%
Confidence Interval [88.5-96.7] [91.8-98.9] [86.0-95.0] [82.3-94.1] [93.2-99.4]

ANN 91.6% 91.9% 91.3793% 88.8% 93.8%
Confidence Interval [87.4-95.8] [87.9-95.9] [87.0-95.8] [84.1-93.4] [88.2-99.4]

TABLE II
CONFUSION MATRIX OBTAINED FROM FUZZY k-NN AND QUADRATIC

DISCRIMINANT FUNCTIONS ALGORITHMS.

CONFUSION TRUE LABELS
MATRIX Positive Negative

ESTIMATED Positive 82 11
LABELS Negative 4 105

slight improvement is shown by Modified k-NN. More-
over Modified k-NN is able to achieve same performance
as Classic k-NN with a lower k value. Another relevant
consideration regards the robustness of Fuzzy k-NN to k
changes: we considered different values of k (k=1,3,5,9,101),
but the algorithm demonstrated to be robust to these changes,
keeping its results invariant. In diagnostic field, sensitivity is
more important than specificity because it is more relevant
to recognize correctly a sick person instead of a healthy
one; in the same way, precision on negative samples is more
important than precision on positive ones, because it is worse
to classify a person as healthy when he or she is actually
sick, than the opposite. Considering larger importance of
sensitivity and precision w.r.t. healthy samples, we can affirm
that Fuzzy k-NN and Quadratic classifier are the algorithms
able to achieve best results for the problem considered. The
confusion matrix obtained by these algorithms is shown in
Table II, where elements along the principal diagonal repre-
sent respectively the TruePositive (TP) and the TrueNegative
(TN) values, while those off-diagonal are respectively the
FalsePositive (FP) and the FalseNegative (FN) values.

Performing a Student’s t-test between all pair of classifiers,
no relevant differences emerged; this means that imple-
mented classifiers’ results are comparable for the considered
problem.

TABLE III
COMPARISON OF LUNG CANCER DIAGNOSIS PERFORMANCE REACHED

WITH THE ELECTRONIC NOSE PRESENTED IN THIS WORK AND CURRENT

DIAGNOSIS TECHNIQUES (DATA FROM [17]).

Indexes CAT PET E-Nose
Accuracy (NER) Nd Nd 92.6%
Confidence Interval [88.5-96.7]
Sensitivity (TPR) 75% 91% 95.3%
Confidence Interval [60-90] [81-100] [91.8-98.9]
Specificity (TNR) 66% 86% 90.5%
Confidence Interval [55-77] [78- 94] [86.0-95.0]

PRECPOS Nd Nd 88.2%
Confidence Interval [82.3-94.1]

PRECNEG Nd Nd 96.3%
Confidence Interval [93.2-99.4]

VII. CONCLUSION AND FURTHER DIRECTION OF
RESEARCH

The use of an electronic nose as lung cancer diagnostic
tool is reasonable if it gives some advantage compared to
current lung cancer diagnostic techniques, namely Computed
Axial Tomography (CAT) and Positron Emission Tomogra-
phy (PET). Not only this is verified in terms of performances,
as illustrated in Table III, but also because the electronic
nose, unlike the classical approaches, is a low cost, robust,
small (and thus eventually portable), very fast and, above all,
non invasive instrument.

In literature there are three other main research works
regarding lung cancer diagnosis by an electronic nose [18],
[19], [20]. Accuracy indexes obtained from these works were
respectively equal to 90.32%, 88.16% and 80%. Moreover,
in [19] and [20], no cross-validation techniques has been
applied to obtain such results; this means that results have
been obtained from one realization and, therefore, they
are not necessarily representative of the real generalization
capability of the classifier.



Our work could be extended in two parallel directions:
the first one regards the improvement of sensors technology
with the development of longer-lyfe and stable sensors.
Moreover, the development of hybrid systems is desirable,
in order to obtain both selective and sensitive sensors. The
second direction regards the improvement of classification
techniques in which we put in evidence the importance of
evaluating other classification algorithms (as support vector
machines, Bayesian approaches or other topologies of ANN),
as well as the use of different algorithms to select the best
subgroup of features for each classifier, instead of using
ranking techniques based on statistical tests. It could be also
very interesting to train the ANN in presence of noise, since it
has been demonstrated that ANNs can compensate humidity,
drift and temperature variation phenomenons [21] that affect
olfactory signals.

According to the scientific literature, there are no studies
on the variation of VOCs in the breath before and after the
surgery: it may be interesting to evaluate the resolution of
the disease due to surgery. An ambitious research prospective
regards the individuation of risk factors connected to lung
cancer (as smoke or food). Involving a larger population and
partitioning it according to different disease stages, it would
be possible to study the possibility of early diagnosis, that
is the most important prospective of research that this work
should follow.
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