

Rossella Blatt¹, Andrea Bonarini¹, Elisa Calabrò² Matteo Della Torre³, Matteo Matteucci¹ and Ugo Pastorino²

Speaker: Rossella Blatt

blatt@elet.polimi.it

¹ Politecnico di Milano, Department of Electronics and Information, Milan, Italy ² Istituto Nazionale Tumori of Milan, Toracic Surgery Department, Milan, Italy ³ SACMI Imola S.C., Automation & Inspection Systems, Imola (BO), Italy

- Objective: Lung Cancer diagnosis classifying the Olfactory Signal acquired by an Electronic Nose
- Motivation
- Functioning of the Electronic Nose
- Classification of volunteers' breath
- Results and comparison with current diagnostic techniques
- Further directions of research

- Objective: Lung Cancer diagnosis classifying the Olfactory Signal acquired by an Electronic Nose
- Motivation
- Functioning of the Electronic Nose
- Classification of volunteers' breath
- Results and comparison with current diagnostic techniques
- Further directions of research

- Objective: Lung Cancer diagnosis classifying the Olfactory Signal acquired by an Electronic Nose
- Motivation
- Functioning of the Electronic Nose
- Classification of volunteers' breath
- Results and comparison with current diagnostic techniques
- Further directions of research

- Objective: Lung Cancer diagnosis classifying the Olfactory Signal acquired by an Electronic Nose
- Motivation
- Functioning of the Electronic Nose
- Classification of volunteers' breath
- Results and comparison with current diagnostic techniques
- Further directions of research

- Objective: Lung Cancer diagnosis classifying the Olfactory Signal acquired by an Electronic Nose
- Motivation
- Functioning of the Electronic Nose
- Classification of volunteers' breath
- Results and comparison with current diagnostic techniques
- Further directions of research

- Objective: Lung Cancer diagnosis classifying the Olfactory Signal acquired by an Electronic Nose
- Motivation
- Functioning of the Electronic Nose
- Classification of volunteers' breath
- Results and comparison with current diagnostic techniques
- Further directions of research

- Lung cancer causes more than 160,000 deaths a year in the United States--more than any other cancer
- Once lung cancer is detected the probability of surviving, after 5 years of therapy, is 14%; the survival rate increases to 48% if the cancer is discovered in its earliest stage
- Current diagnostic techniques are invasive, very expensive, have a high risk of complications and a not so good performance
- Efforts at early detection and treatment have been frustrating to date and hence the overall prognosis remains poor

- Lung cancer causes more than 160,000 deaths a year in the United States--more than any other cancer
- Once lung cancer is detected the probability of surviving, after 5 years of therapy, is 14%; the survival rate increases to 48% if the cancer is discovered in its earliest stage
- Current diagnostic techniques are invasive, very expensive, have a high risk of complications and a not so good performance
- Efforts at early detection and treatment have been frustrating to date and hence the overall prognosis remains poor

- Lung cancer causes more than 160,000 deaths a year in the United States--more than any other cancer
- Once lung cancer is detected the probability of surviving, after 5 years of therapy, is 14%; the survival rate increases to 48% if the cancer is discovered in its earliest stage
- Current diagnostic techniques are invasive, very expensive, have a high risk of complications and a not so good performance
- Efforts at early detection and treatment have been frustrating to date and hence the overall prognosis remains poor

- Lung cancer causes more than 160,000 deaths a year in the United States--more than any other cancer
- Once lung cancer is detected the probability of surviving, after 5 years of therapy, is 14%; the survival rate increases to 48% if the cancer is discovered in its earliest stage
- Current diagnostic techniques are invasive, very expensive, have a high risk of complications and a not so good performance
- Efforts at early detection and treatment have been frustrating to date and hence the overall prognosis remains poor

- Fundamental Principle of Clinical Chemistry: "Every pathology changes people chemical composition, modifying the concentration of some chemicals in the human body"
 - In the medical field, clinicians have always considered odor as a fundamental information for the diagnosis of several diseases
- It has been demonstrated (Gordon et al, 1985) that the presence of lung cancer alters the percentage of some volatile organic compounds (VOCs) present in human breath
 - These VOCs can be considered as **lung cancer markers** and thus used to diagnose it

- Fundamental Principle of Clinical Chemistry: "Every pathology changes people chemical composition, modifying the concentration of some chemicals in the human body"
 - In the medical field, clinicians have always considered odor as a fundamental information for the diagnosis of several diseases
- It has been demonstrated (Gordon et al, 1985) that the presence of lung cancer alters the percentage of some volatile organic compounds (VOCs) present in human breath
 - These VOCs can be considered as **lung cancer markers** and thus used to diagnose it

- Fundamental Principle of Clinical Chemistry: "Every pathology changes people chemical composition, modifying the concentration of some chemicals in the human body"
 - In the medical field, clinicians have always considered odor as a fundamental information for the diagnosis of several diseases
- It has been demonstrated (Gordon et al, 1985) that the presence of lung cancer alters the percentage of some volatile organic compounds (VOCs) present in human breath
 - These VOCs can be considered as **lung cancer markers** and thus used to diagnose it

- An electronic nose is an instrument able to acquire, detect and analyse the olfactory signal
- It is composed of an array of non specific electronic devices (sensors) able to convert a physical or chemical information into an electrical signal
 - It is non specific because it does not look for particular compounds in the analyzed substance, but for different patterns
 - Each sensor reacts in a different way to the analyzed substance providing multidimensional data that can be considered as an olfactory blueprint of the substance itself

- An electronic nose is an instrument able to acquire, detect and analyse the olfactory signal
- It is composed of an array of non specific electronic devices (sensors) able to convert a physical or chemical information into an electrical signal
 - It is non specific because it does not look for particular compounds in the analyzed substance, but for different patterns
 - Each sensor reacts in a different way to the analyzed substance providing multidimensional data that can be considered as an olfactory blueprint of the substance itself

- An electronic nose is an instrument able to acquire, detect and analyse the olfactory signal
- It is composed of an array of non specific electronic devices (sensors) able to convert a physical or chemical information into an electrical signal
 - It is non specific because it does not look for particular compounds in the analyzed substance, but for different patterns
 - Each sensor reacts in a different way to the analyzed substance providing multidimensional data that can be considered as an olfactory blueprint of the

substance itself

- An electronic nose is an instrument able to acquire, detect and analyse the olfactory signal
- It is composed of an array of non specific electronic devices (sensors) able to convert a physical or chemical information into an electrical signal
 - It is non specific because it does not look for particular compounds in the analyzed substance, but for different patterns
 - Each sensor reacts in a different way to the analyzed substance providing multidimensional data that can be considered as an **olfactory blueprint** of the substance itself

- According to the used pattern analysis algorithm, the output of an electronic nose can be:
 - the **detection** of a specific substance
 - an estimate of the concentration of the odor
 - some particular characteristic of the odor that allows to associate it to a particular class

- According to the used pattern analysis algorithm, the output of an electronic nose can be:
 - the detection of a specific substance
 - an estimate of the **concentration** of the odor
 - some particular characteristic of the odor that allows to associate it to a particular class

- According to the used pattern analysis algorithm, the output of an electronic nose can be:
 - the detection of a specific substance
 - an estimate of the concentration of the odor
 - some particular characteristic of the odor that allows to associate it to a particular class

- According to the used pattern analysis algorithm, the output of an electronic nose can be:
 - the detection of a specific substance
 - an estimate of the **concentration** of the odor
 - some particular characteristic of the odor that allows to associate it to a particular class

1. Signal Acquisition

• Acquisition is done through a sensor array that measures a given physical or chemical quantity and convert it into an electrical signal

2. Signal Processing

- Preprocessing: aimed to reduce the impact of noise
- **Dimensionality Reduction**: reduce the dimensionality of the problem, enhancing classification performance

3. Classification and Validation

• Classification between the two classes "healthy" and "sick"

SIGNALS ACQUISITION DIMENSIONALITY REDUCTION CLASSIFICATION Gas to Analyse Sensors Array Acquisition system Baseline Manipulation Feature Extraction Noise Reduction Feature Selection PCA - LDA K-Nearest Neighbors Linear Discriminant Quadratic Discriminant Artificial Neural Networks

1. Signal Acquisition

 Acquisition is done through a sensor array that measures a given physical or chemical quantity and convert it into an electrical signal

2. Signal Processing

- **Preprocessing**: aimed to reduce the impact of noise
- **Dimensionality Reduction**: reduce the dimensionality of the problem, enhancing classification performance

3. Classification and Validation

Classification between the two classes "healthy" and "sick"

1. Signal Acquisition

 Acquisition is done through a sensor array that measures a given physical or chemical quantity and convert it into an electrical signal

2. Signal Processing

- **Preprocessing**: aimed to reduce the impact of noise
- **Dimensionality Reduction**: reduce the dimensionality of the problem, enhancing classification performance

3. Classification and Validation

Classification between the two classes "healthy" and "sick"

1. Signal Acquisition

 Acquisition is done through a sensor array that measures a given physical or chemical quantity and convert it into an electrical signal

2. Signal Processing

- **Preprocessing**: aimed to reduce the impact of noise
- **Dimensionality Reduction**: reduce the dimensionality of the problem, enhancing classification performance

3. Classification and Validation

Classification between the two classes "healthy" and "sick"

 The breath acquisition has been made inviting all volunteers to blow into a nalophan bag of approximately 400cm³

 Then, the air contained in the bag was input into the electronic nose

We used an array of six MOS sensors that react to gases with a variation of resistance

• The breath acquisition has been made inviting all volunteers to blow into a nalophan bag of approximately 400cm³

Then, the air contained in the bag was input into the electronic nose

We used an array of **six MOS sensors** that react to gases with a **variation of resistance**

• The breath acquisition has been made inviting all volunteers to blow into a nalophan bag of approximately 400cm³

 Then, the air contained in the bag was input into the electronic nose

We used an array of **six MOS sensors** that react to gases with a **variation of resistance**

• The breath acquisition has been made inviting all volunteers to blow into a nalophan bag of approximately 400cm³

 Then, the air contained in the bag was input into the electronic nose

We used an array of **six MOS sensors** that react to gases with a **variation of resistance**

We analyzed the breath of **101 volunteers**

We analyzed the breath of **101 volunteers**

We analyzed the breath of **101 volunteers**

We analyzed the breath of **101 volunteers**

Pre-processing & Dimensionality Reduction

Signal pre-processing

- Manipulation of the baseline: transformation of the sensor response w.r.t. its baseline for the purpose of drift compensation
- Reduction of humidity effects
- Normalization: compensation for the scale difference among the six sensors
 - Each sensor has been forced to have zero mean and variance equal to 1

Signal pre-processing

- Manipulation of the baseline: transformation of the sensor response w.r.t. its baseline for the purpose of drift compensation
- Reduction of **humidity** effects
- Normalization: compensation for the scale difference among the six sensors
 - Each sensor has been forced to have zero mean and variance equal to 1

Signal pre-processing

- Manipulation of the baseline: transformation of the sensor response w.r.t. its baseline for the purpose of drift compensation
- Reduction of **humidity** effects
- Normalization: compensation for the scale difference among the six sensors
 - Each sensor has been forced to have zero mean and variance equal to 1

Feature Selection

· Non-parametric test of Mann-Whitney-Wilcoxon

Feature Selection

- Non-parametric test of Mann-Whitney-Wilcoxon
- · Scatter Plot
- MANOVA

- Non Parametric Linear Discriminant Analysis NPLDA (Fukunaga, 1983)
 - · A generalization of Fisher's LDA
 - It **removes the unimodal gaussian assumption** by computing the between scatter matrix S_b using the k-NN rule
- · Best projection: 1st NPLDA component

Feature Selection

- Non-parametric test of Mann-Whitney-Wilcoxon
- · Scatter Plot
- MANOVA

- Non Parametric Linear Discriminant Analysis NPLDA (Fukunaga, 1983)
 - · A generalization of Fisher's LDA
 - It **removes the unimodal gaussian assumption** by computing the between scatter matrix S_k using the k-NN rule
- · Best projection: 1st NPLDA component

Feature Selection

- Test of Mann-Whitney-Wilcoxon
- Scatter Plot
- MANOVA

- · **NPLDA** (Fukunaga, 1983)
 - · A generalization of Fisher's LDA
 - It **removes the unimodal gaussian assumption** by computing the between scatter matrix S_b using the k-NN rule
- Best projection: 1st NPLDA component

- Different families of classifiers:
 - Nearest Neighbor Classifiers (k-NN)
 - Classic k-NN
 - Modified k-NN --> k=number of neighbors belonging all to the same class
 - Fuzzy *k*-Nearest Neighbors --> assigns a class membership function to each training and test samples
 - Discriminant Functions Classifiers
 - Linear
 - Quadratic
 - Artificial Neural Network
 - Feedforward Neural Network with one hidden layer

- Different families of classifiers:
 - Nearest Neighbor Classifiers (k-NN)
 - Classic k-NN
 - Modified k-NN --> k=number of neighbors belonging all to the same class
 - Fuzzy *k*-Nearest Neighbors --> assigns a class membership function to each training and test samples
 - Discriminant Functions Classifiers
 - Linear
 - Quadratic
 - Artificial Neural Network
 - Feedforward Neural Network with one hidden layer

- Different families of classifiers:
 - Nearest Neighbor Classifiers (k-NN)
 - Classic k-NN
 - Modified k-NN --> k=number of neighbors belonging all to the same class
 - Fuzzy k-Nearest Neighbors --> assigns a class membership function to each training and test samples
 - Discriminant Functions Classifiers
 - Linear
 - Quadratic
 - Artificial Neural Network
 - Feedforward Neural Network with one hidden layer

- Different families of classifiers:
 - Nearest Neighbor Classifiers (k-NN)
 - Classic k-NN
 - **Modified k-NN** --> k=number of neighbors belonging all to the same class
 - Fuzzy k-Nearest Neighbors --> assigns a class membership function to each training and test samples
 - Discriminant Functions Classifiers
 - Linear
 - Quadratic
 - Artificial Neural Network
 - Feedforward Neural Network with one hidden layer

- Different families of classifiers:
 - Nearest Neighbor Classifiers (k-NN)
 - Classic k-NN
 - Modified k-NN --> k=number of neighbors belonging all to the same class
 - Fuzzy k-Nearest Neighbors --> assigns a class membership function to each training and test samples
 - Discriminant Functions Classifiers
 - Linear
 - Quadratic
 - Artificial Neural Network
 - Feedforward Neural Network with one hidden layer

- Performance has been evaluated through **confusion matrix** and the corresponding **performance indexes** (CI=95%)
- Cross-validation: modified leave-one-out
- We considered **different values for** k (k=1,3,5,9,101)

Classifier	NER	TPR	TNR	$PREC_{POS}$	$PREC_{NEG}$
Classic 9-NN	90.1%	89.5%	90.5%	87.5%	92.1%
Confidence Interval	[85.7-94.5]	[85.3-93.8]	[86.0-95.0]	[81.6-93.4]	[86.8-97.4]
Modified 9-NN	91.1%	91.9%	90.5%	87.8%	93.7%
Confidence Interval	[86.8-95.4]	[87.9-95.9]	[86.0-95.0]	[81.9-93.7]	[89.1-98.4]
Fuzzy k-NN	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]	[86.0-95.0]	[82.3-94.1]	[93.2-99.4]
LD	89.6%	96.5%	84.5%	82.2%	97.0%
Confidence Interval	[85.0-94.2]	[93.7-99.3]	[79.1-89.9]	[75.2-89.1]	[93.9-100]
QD	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]	[86.0-95.0]	[82.3-94.1]	[93.2-99.4]
ANN	91.6%	91.9%	91.3793%	88.8%	93.8%
Confidence Interval	[87.4-95.8]	[87.9-95.9]	[87.0-95.8]	[84.1-93.4]	[88.2-99.4]

- Performance has been evaluated through **confusion matrix** and the corresponding **performance indexes** (CI=95%)
- **Cross-validation:** *modified* leave-one-out
- We considered **different values for** k (k=1,3,5,9,101)

Classifier	NER	TPR	TNR	$PREC_{POS}$	$PREC_{NEG}$
Classic 9-NN	90.1%	89.5%	90.5%	87.5%	92.1%
Confidence Interval	[85.7-94.5]	[85.3-93.8]	[86.0-95.0]	[81.6-93.4]	[86.8-97.4]
Modified 9-NN	91.1%	91.9%	90.5%	87.8%	93.7%
Confidence Interval	[86.8-95.4]	[87.9-95.9]	[86.0-95.0]	[81.9-93.7]	[89.1-98.4]
Fuzzy k-NN	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]	[86.0-95.0]	[82.3-94.1]	[93.2-99.4]
LD	89.6%	96.5%	84.5%	82.2%	97.0%
Confidence Interval	[85.0-94.2]	[93.7-99.3]	[79.1-89.9]	[75.2-89.1]	[93.9-100]
QD	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]	[86.0-95.0]	[82.3-94.1]	[93.2-99.4]
ANN	91.6%	91.9%	91.3793%	88.8%	93.8%
Confidence Interval	[87.4-95.8]	[87.9-95.9]	[87.0-95.8]	[84.1-93.4]	[88.2-99.4]

- Performance has been evaluated through confusion matrix and the corresponding performance indexes (CI=95%)
- **Cross-validation:** *modified* leave-one-out
- We considered **different values for** k (k=1,3,5,9,101)

Classifier	NER	TPR	TNR	$PREC_{POS}$	$PREC_{NEG}$
Classic 9-NN	90.1%	89.5%	90.5%	87.5%	92.1%
Confidence Interval	[85.7-94.5]	[85.3-93.8]	[86.0-95.0]	[81.6-93.4]	[86.8-97.4]
Modified 9-NN	91.1%	91.9%	90.5%	87.8%	93.7%
Confidence Interval	[86.8-95.4]	[87.9-95.9]	[86.0-95.0]	[81.9-93.7]	[89.1-98.4]
Fuzzy k-NN	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]	[86.0-95.0]	[82.3-94.1]	[93.2-99.4]
LD	89.6%	96.5%	84.5%	82.2%	97.0%
Confidence Interval	[85.0-94.2]	[93.7-99.3]	[79.1-89.9]	[75.2-89.1]	[93.9-100]
QD	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]	[86.0-95.0]	[82.3-94.1]	[93.2-99.4]
ANN	91.6%	91.9%	91.3793%	88.8%	93.8%
Confidence Interval	[87.4-95.8]	[87.9-95.9]	[87.0-95.8]	[84.1-93.4]	[88.2-99.4]

- Performance has been evaluated through **confusion matrix** and the corresponding **performance indexes** (CI=95%)
- **Cross-validation:** *modified* leave-one-out
- We considered **different values for** k (k=1,3,5,9,101)

Classifier	NER	TPR	TNR	$PREC_{POS}$	$PREC_{NEG}$
Classic 9-NN	90.1%	89.5%	90.5%	87.5%	92.1%
Confidence Interval	[85.7-94.5]	[85.3-93.8]	[86.0-95.0]	[81.6-93.4]	[86.8-97.4]
Modified 9-NN	91.1%	91.9%	90.5%	87.8%	93.7%
Confidence Interval	[86.8-95.4]	[87.9-95.9]	[86.0-95.0]	[81.9-93.7]	[89.1-98.4]
Fuzzy k-NN	92.6 %	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]	[86.0-95.0]	[82.3-94.1]	[93.2-99.4]
LD	89.6%	96.5 %	84.5%	82.2%	97.0%
Confidence Interval	[85.0-94.2]	[93.7-99.3]	[79.1-89.9]	[75.2-89.1]	[93.9-100]
QD	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]	[86.0-95.0]	[82.3-94.1]	[93.2-99.4]
ANN	91.6%	91.9%	91.3793%	88.8%	93.8%
Confidence Interval	[87.4-95.8]	[87.9-95.9]	[87.0-95.8]	[84.1-93.4]	[88.2-99.4]

CONFUS	ION	TRUE I	LABELS
MATR	ΙX	Positive	Negative
ESTIMATED	Positive	82	11
LABELS	Negative	4	105

Indexes	Average Index	Confidence Interval
		(CI = 95%)
Accuracy	92.6%	[88.5-96.7]
Sensitivity	95.3%	[91.8-98.9]
Specificity	90.5%	[86.0-95.0]
$PREC_{POS}$	88.2%	[82.3-94.1]
$PREC_{NEG}$	96.3%	[93.2-99.4]

CONFUS	SION	TRUE I	LABELS
MATR:	IX	Positive	Negative
ESTIMATED	Positive	82	11
LABELS	Negative	4	105

Indexes	Average Index	Confidence Interval
		(CI = 95%)
Accuracy	92.6%	[88.5-96.7]
Sensitivity	95.3%	[91.8-98.9]
Specificity	90.5%	[86.0-95.0]
$PREC_{POS}$	88.2%	[82.3-94.1]
$PREC_{NEG}$	96.3%	[93.2-99.4]

CONFUS	ION	TRUE I	LABELS
MATR:	IX	Positive	Negative
ESTIMATED	Positive	82	11
LABELS	Negative	4	105

Indexes	Average Index	Confidence Interval
		(CI = 95%)
Accuracy	92.6%	[88.5-96.7]
Sensitivity	95.3%	[91.8-98.9]
Specificity	90.5%	[86.0-95.0]
$PREC_{POS}$	88.2%	[82.3-94.1]
$PREC_{NEG}$	96.3%	[93.2-99.4]

CONFUS	ION	TRUE I	LABELS
MATR:	IX	Positive	Negative
ESTIMATED	Positive	82	11
LABELS	Negative	4	105

Indexes	Average Index	Confidence Interval
		(CI=95%)
Accuracy	92.6%	[88.5-96.7]
Sensitivity	95.3%	[91.8-98.9]
Specificity	90.5%	[86.0-95.0]
$PREC_{POS}$	88.2%	[82.3-94.1]
$\widehat{\mathrm{PREC}}_{NEG}$	96.3%	[93.2 - 99.4]

Classifiers Comparison

- Performing a student t-test between all pairs of classifiers, no relevant differences emerged
 - All implemented classifiers result comparable for the considered problem
- The **robustness** showed by Fuzzy k-NN to *k* changes is not verified in the classic and the modified *k*-NN, that leads to different results according to the value of *k*
- Moreover the output given by Fuzzy *k*-NN can be used to investigate the **relationship between these values and lung cancer stages**

Classifiers Comparison

- Performing a student t-test between all pairs of classifiers, no relevant differences emerged
 - All implemented classifiers result comparable for the considered problem
- The **robustness** showed by Fuzzy k-NN to *k* changes is not verified in the classic and the modified *k*-NN, that leads to different results according to the value of *k*
- Moreover the output given by Fuzzy k-NN can be used to investigate the relationship between these values and lung cancer stages

Classifiers Comparison

- Performing a student t-test between all pairs of classifiers, no relevant differences emerged
 - All implemented classifiers result comparable for the considered problem
- The **robustness** showed by Fuzzy k-NN to *k* changes is not verified in the classic and the modified *k*-NN, that leads to different results according to the value of *k*
- Moreover the output given by Fuzzy k-NN can be used to investigate the relationship between these values and lung cancer stages

Comparison to current diagnostic methods

 The use of an electronic nose as lung cancer diagnostic tool is reasonable if it gives some advantages compared to current diagnostic techniques

	Accuracy	Sensitivity	Specificity	$PREC_{POS}$	$PREC_{NEG}$
CAT	Nd	75%	66%	Nd	Nd
Confidence Interval		[60-90]	[55-77]		
PET	Nd	91%	86%	Nd	Nd
Confidence Interval		[81-100]	[78- 94]		
E-Nose	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]]	[86.0-95.0]	[82.3-94.1]	[93.2-99.4]

- Electronic nose results better in terms of performance
- Electronic noses are <u>cheaper</u>, <u>smaller</u> (and thus eventually portable), <u>very fast</u> and <u>non invasive</u> instruments

Comparison to current diagnostic methods

 The use of an electronic nose as lung cancer diagnostic tool is reasonable if it gives some advantages compared to current diagnostic techniques

	Accuracy	Sensitivity	Specificity	$PREC_{POS}$	PREC_{NEG}
CAT	Nd	75%	66%	Nd	Nd
Confidence Interval		[60-90]	[55-77]		
PET	Nd	91%	86%	Nd	Nd
Confidence Interval		[81-100]	[78- 94]		
E-Nose	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]]	[86.0-95.0]	[82.3 - 94.1]	[93.2 - 99.4]

- Electronic nose results better in terms of performance
- Electronic noses are <u>cheaper</u>, <u>smaller</u> (and thus eventually portable), <u>very fast</u> and <u>non invasive</u> instruments

Comparison to current diagnostic methods

 The use of an electronic nose as lung cancer diagnostic tool is reasonable if it gives some advantages compared to current diagnostic techniques

	Accuracy	Sensitivity	Specificity	$PREC_{POS}$	PREC_{NEG}
CAT	Nd	75%	66%	Nd	Nd
Confidence Interval		[60-90]	[55-77]		
PET	Nd	91%	86%	Nd	Nd
Confidence Interval		[81-100]	[78- 94]		
E-Nose	92.6%	95.3%	90.5%	88.2%	96.3%
Confidence Interval	[88.5-96.7]	[91.8-98.9]]	[86.0-95.0]	[82.3 - 94.1]	[93.2 - 99.4]

- Electronic nose results better in terms of performance
- Electronic noses are <u>cheaper</u>, <u>smaller</u> (and thus eventually portable), <u>very fast</u> and <u>non invasive</u> instruments

- 1. Improvement of Sensors Technology:
 - · Development of <u>longer-lyfe</u> and <u>more stable</u> sensors
 - Development of <u>hybrid systems</u>, able to provide both selective and sensitive abilities
- 2. Improvement of Olfactory Signal Analysis techniques and Classification Algorithms
- 3. Exploration of Informations hidden in the Olfactory Signal
 - · Analysis of the olfactory patterns' changes due to surgery
 - · Variation of VOCs in the breath before and after the surgery
 - · It could turn out to be useful for **therapy**
 - · Individuation of **risk factors** connected to lung cancer
 - Involving a larger population, partitioning it according to different stages and using the Fuzzy output information, it would be possible to study the possibility of **early diagnose**

1. Improvement of **Sensors Technology**:

- · Development of <u>longer-lyfe</u> and <u>more stable</u> sensors
- Development of <u>hybrid systems</u>, able to provide both selective and sensitive abilities
- 2. Improvement of Olfactory Signal Analysis techniques and Classification Algorithms
- 3. Exploration of Informations hidden in the Olfactory Signal
 - · Analysis of the **olfactory patterns' changes due to surgery**
 - · Variation of VOCs in the breath before and after the surgery
 - · It could turn out to be useful for **therapy**
 - · Individuation of **risk factors** connected to lung cancer
 - Involving a larger population, partitioning it according to different stages and using the Fuzzy output information, it would be possible to study the possibility of **early diagnose**

- 1. Improvement of **Sensors Technology**:
 - · Development of <u>longer-lyfe</u> and <u>more stable</u> sensors
 - Development of <u>hybrid systems</u>, able to provide both selective and sensitive abilities
- 2. Improvement of Olfactory Signal Analysis techniques and Classification Algorithms
- 3. Exploration of Informations hidden in the Olfactory Signal
 - · Analysis of the **olfactory patterns' changes due to surgery**
 - · Variation of VOCs in the breath before and after the surgery
 - · It could turn out to be useful for **therapy**
 - · Individuation of **risk factors** connected to lung cancer
 - Involving a larger population, partitioning it according to different stages and using the Fuzzy output information, it would be possible to study the possibility of **early diagnose**

- 1. Improvement of **Sensors Technology**:
 - · Development of <u>longer-lyfe</u> and <u>more stable</u> sensors
 - Development of <u>hybrid systems</u>, able to provide both selective and sensitive abilities
- 2. Improvement of Olfactory Signal Analysis techniques and Classification Algorithms
- 3. Exploration of Informations hidden in the Olfactory Signal
 - · Analysis of the **olfactory patterns' changes due to surgery**
 - · Variation of VOCs in the breath before and after the surgery
 - · It could turn out to be useful for **therapy**
 - · Individuation of **risk factors** connected to lung cancer
 - Involving a larger population, partitioning it according to different stages and using the Fuzzy output information, it would be possible to study the possibility of **early diagnose**

- 1. Improvement of **Sensors Technology**:
 - · Development of <u>longer-lyfe</u> and <u>more stable</u> sensors
 - Development of <u>hybrid systems</u>, able to provide both selective and sensitive abilities
- 2. Improvement of Olfactory Signal Analysis techniques and Classification Algorithms
- 3. Exploration of Informations hidden in the Olfactory Signal
 - · Analysis of the **olfactory patterns' changes due to surgery**
 - **Variation of VOCs** in the breath before and after the surgery
 - · It could turn out to be useful for **therapy**
 - · Individuation of **risk factors** connected to lung cancer
 - Involving a larger population, partitioning it according to different stages and using the Fuzzy output information, it would be possible to study the possibility of **early diagnose**

- 1. Improvement of **Sensors Technology**:
 - · Development of <u>longer-lyfe</u> and <u>more stable</u> sensors
 - Development of <u>hybrid systems</u>, able to provide both selective and sensitive abilities
- 2. Improvement of Olfactory Signal Analysis techniques and Classification Algorithms
- 3. Exploration of Informations hidden in the Olfactory Signal
 - · Analysis of the **olfactory patterns' changes due to surgery**
 - **Variation of VOCs** in the breath before and after the surgery
 - · It could turn out to be useful for **therapy**
 - · Individuation of **risk factors** connected to lung cancer
 - Involving a larger population, partitioning it according to different stages and using the Fuzzy output information, it would be possible to study the possibility of **early diagnose**

- 1. Improvement of **Sensors Technology**:
 - · Development of <u>longer-lyfe</u> and <u>more stable</u> sensors
 - Development of <u>hybrid systems</u>, able to provide both selective and sensitive abilities
- 2. Improvement of Olfactory Signal Analysis techniques and Classification Algorithms
- 3. Exploration of Informations hidden in the Olfactory Signal
 - · Analysis of the **olfactory patterns' changes due to surgery**
 - **Variation of VOCs** in the breath before and after the surgery
 - · It could turn out to be useful for **therapy**
 - · Individuation of **risk factors** connected to lung cancer
 - Involving a larger population, partitioning it according to different stages and using the Fuzzy output information, it would be possible to study the possibility of **early diagnose**

- 1. Improvement of **Sensors Technology**:
 - · Development of <u>longer-lyfe</u> and <u>more stable</u> sensors
 - Development of <u>hybrid systems</u>, able to provide both selective and sensitive abilities
- 2. Improvement of Olfactory Signal Analysis techniques and Classification Algorithms
- 3. Exploration of Informations hidden in the Olfactory Signal
 - · Analysis of the **olfactory patterns**' **changes due to surgery**
 - **Variation of VOCs** in the breath before and after the surgery
 - · It could turn out to be useful for **therapy**
 - · Individuation of **risk factors** connected to lung cancer
 - Involving a larger population, partitioning it according to different stages and using the Fuzzy output information, it would be possible to study the possibility of **early diagnose**

Thanks!