
SeManTiK: SEmantic MANagement of

aTtachments Inside a wiKi engine

Nicholas Angelo Crespi

Fabio Panozzo

August 2, 2008

Contents

1 Requirement Analysis 3

1.1 The Problem . 3

1.2 Establishing The Requirements 3

1.3 Storing Information: The Ontology 4

1.4 File Identi�cation: Who Are You? 5

1.5 Meta-data Extraction: Making File Juice 6

1.6 Meta-data Storing and Updating 7

1.7 Meta-data Visualization . 7

1.8 Knowledge Base Query . 8

2 Implementation Details 9

2.1 File Identi�cation . 9

2.2 Meta-data Extraction . 10

2.2.1 Audio . 10

2.2.2 Images . 11

2.2.3 Video . 12

2.3 Meta-data Storing . 12

2.4 Meta-data Visualization . 12

2.5 Updating Meta-data . 13

2.6 Knowledge Base Query . 14

3 Issues 17

1

Preface

The world of Semantic Web is in continuous and constant evolution. Our e�ort
in this project is projected towards the implementation of an innovative method
of cataloguing for meta-information. In particular, its main goal is the imple-
mentation of an extension of a wiki engine that is required to manage meta-data
extracted from attachments.

2

Chapter 1

Requirement Analysis

1.1 The Problem

The problem that is addressed in this paper is the automatic collection and
visualization of attachment �les' meta-data in any semantic wiki page, as well
as the memorization in a Knowledge base (KB) in which it is possible to perform
interrogations from the same wiki pages.

1.2 Establishing The Requirements

At a �rst glance, the problem can be coarsely subdivided into four main areas
of interest:

Distillation: extract meta-data from a multimedia �le and store them in a
suitable place;

Visualization: meta-data should be printed just below the �le link, in the
appropriate page;

Filling: the wiki should give the user a chance to �ll in any missing meta-data;

Querying: it should be possible to formulate queries about the stored infor-
mation.

Further analysis of these points reveals that, in order to achieve our goal, we
must �nd a storage method for our data. Furthermore, we need to �nd a
method that identi�es the �le type (in order to discriminate about which �les
are multimedia and which are not) and a method for extracting speci�c meta-
data from them. After these two steps, we need to �nd a method for storing
the data we achieved in the aforementioned storage system. Finally, we need
to �nd a way for showing the information gathered and for adding the missing
ones.

3

CHAPTER 1. REQUIREMENT ANALYSIS 4

Figure 1.1: Ontology class diagram of the �le domain.

1.3 Storing Information: The Ontology

The �rst question is: "Why an ontology? Why not a database?".
The simplest answer is: "Because (at least for our particular problem) an on-
tology is better than a database".
Now we explain it in detail: if you use a database, you can do only few opera-
tions (like selection and join). Instead with an ontology store in a KB you have
in hand not only classes, but also properties which link classes. In any query
you can extract information trough proprierties.
The �rst step of any ontology design process is the modelization of the domain.
In this case we're asked to store attributes related to special kinds of �les: there-
fore we must �rst discriminate when a �le is a multimedia �le. As there isn't
a standard taxonomy about �les, we based our model on our knowledge, trying
to make it as general and as scalable as possible.
The �le taxonomy we came out with starts subdividing �les in two broad cate-
gories: applications and data. Then we concentrated our modelling e�ort in the
data category, which contains all the �les we're interested into. The �rst sub-
division of this category di�erentiates the type of media the format describes.
Three categories has been modeled: audio, image and video, and among each
one we decided to choose the most common �le types.
If from one side this cataloguing has permitted to realize the part of the ontol-
ogy which deals with �les, on the other side we have to model a list of possible
metadata possessed by an attachment �le, in order to save this information.
Figures 1.1 and 1.2 represent two views of the KB structure.

CHAPTER 1. REQUIREMENT ANALYSIS 5

Figure 1.2: Ontology class diagram of the meta-data domain.

1.4 File Identi�cation: Who Are You?

File identi�cation is a tedious issue. Since we're writing an extension to a
portable software, we want our identi�cation method to be portable too. It
must also discriminate at least the most common multimedia �les. Furthermore,
its response will be manipulated from inside our software without much e�ort.
Furthermore, and this point is mandatory, it must be released with a free-
software license. This requested feature should run every time any user upload
an attachment to a page. Moreover, it should not perform the next phases if it
detects that a �le does not belong to one of the speci�ed �le types.

A simple �le identi�cation method, mostly used in DOS- based operating
systems, discriminates the �le type based on a three-char extension placed at
the end of the �le name, after a special delimitation character (a point). Unfor-
tunately this method has many serious drawbacks. Two of the most important
are:

• there can be a �le which has no extension;

• the extension is part of the �le name, so it could be modi�ed by any person
that has write access to it.

This can lead to ambiguity in the extraction phase, so it must be discarded.

Another �le identi�cation method, this time used in UNIX systems, looks
at the �le magic number. A magic number is a known pattern inside a �le
that identi�es it with a speci�c type. For example, every shell script begins
with a she-bang followed by the invocation of an interpreter, so any �le that
starts with this pattern can be identi�ed as a script. There are several programs
that implement this identi�cation method, �le being the most common (since
it's provided with any Linux distribution). However, it isn't easily available for
other operating systems, so we can't use it.

Remembering the portability requirement, we focused our search e�ort on
Java �le identi�cation solutions. We found three di�erent frameworks that
conforms to that: JmimeMagic, JHOVE and Aperture.

CHAPTER 1. REQUIREMENT ANALYSIS 6

The �rst, JmimeMagic, has a simple detection engine, based on �le extension,
so we discarded it.

Aperture is �an open source method for crawling and indexing informations�.
It performs MIME type �le identi�cation by looking at magic numbers, and if
anything goes wrong with that it falls back to extension method. It's written in
Java, which matches our portability and manipulation requirements. Another
interesting feature of aperture is meta-data extraction: we will discuss about it
in the next section.

JHOVE is a Java framework that performs many complementary task. It
implements modular extraction procedures as Aperture does; but it goes even
further, encapsulating all the �le-related information in it. A JHOVE module
for a certain �le type is thus in charge of:

• keeping the identi�cation pattern by which the �le is identi�ed;

• validate the �le following some schema;

• extract meaningful information (meta-data), if they're encoded.

Like Aperture, JHOVE has a standard list of modules shipped with it, and
among these there are almost all of the �le types we need; plus, JHOVE's
performances are similar to the Aperture's one. So we have, by now, two possible
candidates.

1.5 Meta-data Extraction: Making File Juice

Once a �le has been identi�ed, we must extract the meta-data provided by it.
The fact that nearly every multimedia �le type has its own meta-data internal
representation makes the whole extraction hard. We need a meta-data extrac-
tion algorithm that can support di�erent meta-data structure (at least EXIF
tag and ID3 tag). We want it to be written in a portable language, for the
above reason. A plus would be to �nd a modular framework, so that anyone
can write a plug in for a new meta-data storage tag system. Finally, as stated
for the previous point, it must be released with a free-software license.

Two of the frameworks mentioned in the previous section also provide meta-
data extraction: JHOVE and Aperture.

Aperture has a modular approach for the extraction. Every extractor has
its reference MIME type and will perform speci�c meta-data gathering (i.e.: an
extractor associated with the MIME type �audio/MP3� will perform ID3 tag
extraction). There's a standard set of extractors maintained by the Aperture
development team, and it's also possible to develop third-party extractors by
inheriting a set of interfaces common to all of them. The problem with Aperture
is that the standard set of extractors does not support most of the �les we need
to handle, and we could not �nd third-party extractors that handles them. So
we have to discard Aperture.

As previously stated, JHOVE implements modular extraction procedures as
Aperture does; but it goes even further, encapsulating all �le-related informa-
tions in a module. A JHOVE module for a certain �le type is thus in charge
of:

CHAPTER 1. REQUIREMENT ANALYSIS 7

• keeping the identi�cation pattern by which the �le is identi�ed;

• validate the �le following some schema;

• extract meaningful information (meta-data), if they're encoded.

JHOVE has several standard �le type modules, and this set almost completely
covers our needed �le type taxonomy. It also produces the output in several
ways (two of them being text and XML) that are easy to process. Because of
this and the properties stated in the previous section, we chose JHOVE.

1.6 Meta-data Storing and Updating

Once we gathered the meta-data, we must insert it in the ontology. We need
to �nd a framework that is portable and free (for previously stated reasons).
It must have a method of handling an OWL ontology, either by means of a
querying language or in some other way. It must take as input the processed
meta-data extracted from JHOVE output, so it must be easy to interface it
within Java.

In addition we want to give users the option to complete missing meta-
data. This means that the framework we're looking for must provide a way to
search for existing instances and to add relations between them and the updated
information.

Finally, there's some requirements about the implementation logic. When a
user uploads a new version of a �le, the system should clear all the information
previously stored in the ontology and should create a new entry for the �le (thus
deleting all the previously inserted meta-data). Furthermore, the name of the
�le instance should contains the page in which it is attached to, in order to allow
for having two pages with the same attachment (or two di�erent attachments
with the same name).

The most used framework when it comes to handling ontologies with Java is
JENA. It is �...a framework for building semantic web applications�. It provides
an object-oriented environment for handling OWL ontologies, SPARQL query
engine and a rule-based inference engine. Its development is sponsored by the
HP semantic lab Web programme and it's carried on under an open-source
compatible license (JENA license). Furthermore, we have some knowledge of
this framework, as we've already used it in the recent past. So we chose to
handle the integration between the knowledge base and the wiki application
with it.

1.7 Meta-data Visualization

Once we gathered the meta-data, we must visualize it. Visualization must take
place in the appropriate page and close to the �le link. Furthermore, the option
of completing missing information should be given only to authorized users (and
not to anyone).

CHAPTER 1. REQUIREMENT ANALYSIS 8

1.8 Knowledge Base Query

The last feature required in planning is the possibility to execute interrogations
to the KB about the attached �les and their metadata information.
The current knowledge about user interfaces for semantic search hasn't helped
us much: if from one side there has been an enormous progress in information
cataloguing and manipulation on semantic level, the research in this �eld is still
moving its �rst steps.
In planning choice we decided to give the user the maximum possible freedom
in interrogation formulation. For this reason we didn't think about a set be-
tween which the users can choose; we instead gave them the chance to specify
their own queries autonomously, provided they are written in an appropriate
language (SPARQL).
Like every choice, ours contains both advantages and disadvantages: user isn't
limited from our contains both adv. and a designer decisions and from standard
set of queries, but he must have two di�erent kinds of knowledge:

• Knowledge about KB structure;

• Knowledge about syntax and semantic of languages of the query language.

Chapter 2

Implementation Details

Once we've established the requirements of this application, we moved on to the
writing phase. The next sections will be about the low-level problems we have
faced and the solutions we have come up with. We tried to mirror the previous
chapter schema in order to allow for easy referencing between the requirements
and the actual implementation. However, some points will be linked together,
while some will be split in parts.

2.1 File Identi�cation

The �rst thing to do, before even thinking aboutr the identi�cation algorithm
we want to implement, is to surf the JSPWiki code, in search for the code
fragment that handles the attachment of �les. We found that there are two
di�erent methods that provide attachment handling: BasicAttachmentProvider
and CachingAttachmentProvider. The second one is a �virtual� provider, relying
on the �rst to get the job done, so we have to put our code in that one.

Inside the class, the function that actually does the transaction is outAttach-
mentData. Once the �le has been uploaded, we put a call to our identi�cation-
extraction-storing class (the class itself has only one static method), collectAnd-
StoreMetadata). This method accepts four parameters, which are:

WikiEngine engine: a reference to the running wiki engine;

String pageName: the page that will host the attachment;

String AttName: the name of original attached �le;

File AttStore: the full path name under which JSPWiki had stored it.

Notice that, even if the last two parameters can be confused, they are di�erent:
AttName is the unmangled �le name, while AttStore is the concatenation of the
path where the attachment is stored and the �versioned� �le name, automatically
changed by the wiki engine.

9

CHAPTER 2. IMPLEMENTATION DETAILS 10

As we know where the �le is stored, we can then dispatch JHOVE on it, and
we can save its output in the wiki working directory (extracted from the engine
parameter). Then we can parse the output in order to identify the �le.

The output of JHOVE is a well-structured list of information, each with an
associated identi�er: that makes it easy to parse it in order to �nd any piece
of information. The �le type identi�er is �RepresentationInformation�. If the
associated data is one of the wanted �le type (except for MPG or AVI), we
proceed to the next step. If it's not one of them, we must also check if the �le
is a video, because JHOVE has no plug-in for them. Thus, if the original �le
extension is AVI of MPG, we handle the attachment as a video �le; otherwise,
we simply exit.

2.2 Meta-data Extraction

The second step of the insertion algorithm, because of JHOVE's modularity, is
a natural continuation of the �rst one. The invocation of this part tells us that
the format has been identi�ed and checked, and that the �le has been validated
(which means it's well formed). The �rst thing to do is to extract common
information from the textual output of JHOVE. As these are provided by the
�le system, they are always present, even if any other information is missing.
They are:

• the �le name, that will be used as an identi�er (its identi�cation string in
the text is �RepresentationInformation�);

• the �le dimension (its identi�cation string in the text is �Size�);

• the date when the �le has been last modi�ed (its identi�cation string in
the text is �LastModi�ed �).

After this �rst extraction, the algorithm di�ers depending on the �le archetype.
We have three basic types of �le: audio �les, image �les and video �les.

2.2.1 Audio

For this �le archetype we want to extract (if present) information about the
bitrate, the title, the author, the album, the genre, the year in which it has
been recorded and the album in which it is contained.

Our ontology only models two types of audio �le: mp3 and wave. The only
information we can extract from wave �les is the bitrate, because there's no tag
system that can be embedded in this �le type. Conversely, mp3 �les have a
speci�c meta-data tagging system that's also widely used, called ID3. It comes
in two version, ID3v1.1 and ID3v2.4, and both they can be extracted using
JHOVE.

CHAPTER 2. IMPLEMENTATION DETAILS 11

Mp3

In this case, our algorithm �rst checks if the �le has an ID3 header: if not,
it extracts only the bitrate and then skips to the next phase. If the header is
found, it searches for all the speci�c �elds listed above. It prefers ID3v2 tags
(since they can be accurate for a number of reasons) over ID3v1 if they're both
present. The identi�cation strings for the speci�c meta-data are:

• �Bitrate Index � identi�es the bitrate of the mp3 �le (in kbps);

• �Album� identi�es the album in which the song is published;

• �Artist� identi�es the author of the �le;

• �Genre� identi�es the genre of the audio �le;

• �Year � identi�es the year in which the audio �le has been recorder.

When the end of the output is reached, even if some meta-data are missing, the
algorithms begins the insertion procedure.

Wave

In this case, as there isn't any meta-data container that can be embedded into
this �le, the only information we can get is the bitrate. However, The WAVE
module of JHOVE doesn't return this information, but it tells us the sampling
frequency and the sample bit depth, so that we can combine them and compute
the bitrate. The identi�ers of these two meta-data are:

• �BitDepth� identi�es the size in bits of every sample;

• �SampleRate� identi�es the sampling rate (in kHz).

Once we have these two information, the bitrate is just the factor of them.

2.2.2 Images

Our �le taxonomy contains GIF, TIFF and JPEG types of images, which are
the most used image types (apart from PNG). The peculiarity of these three
is that they all can embed EXIF tags, an image related meta-data tag system.
EXIF tags contains useful information about the camera that shoot the image
as well as many properties about the picture, such as the shooting date, the
canvas size, the color encoding and so on.

If present, we are interested in the shooting date, which is indexed by JHOVE
under the identi�er �exif:DateTimeOriginal �. If the extraction algorithm �nd
this string in the output, it takes the information, separate the hour from the
date and replace the �le date (one of the three meta-data common to all �les)
with the shooting date.

CHAPTER 2. IMPLEMENTATION DETAILS 12

2.2.3 Video

In This case, unfortunately we can't extract anything useful, as there's no known
meta-data container that can be embedded in them (and JHOVE doesn't have
a module for parsing them). So, the only things we can automatically extract
are the �le size and the �le date.

2.3 Meta-data Storing

The third step of the insertion algorithm handles the communication with the
ontology. Now we have a �le name, its type and a list of meta-data extracted
from it. We want to insert them in the ontology with the appropriate relations.

As there's no other way to handle the population of the ontology, we have
to use the object-oriented JENA API for ontology representation. It loads the
ontology and creates a model of it, referencing it as a Java object (OntModel).
After that, it's possible to create an individual by simply specifying the class it
belongs to and its name. It's also possible to create a link between two instances,
by adding properties to objects (using OntProperty objects).

The �rst thing to do is to check if the attachment is a new version of a
previously uploaded one. If it's already in the model, we erase all of its previous
associations and we proceed to add the newer ones; otherwise, we create the new
�le instance. After this step, we create one individual for each piece of meta-
data extracted in the previous phase (each with the appropriate class type), and
then we create the association between the �le class and each meta-data class
by using OntProperty objects. Finally, we save all the changes we made to the
ontology, and then the algorithm ends.

2.4 Meta-data Visualization

Now we have to look for the code that writes the attachments information at
the bottom of the page. After some search we found that each page is ren-
dered starting by several templates that can be found in the templates/default
directory of the deployed JSPWiki. The template that renders the attachment
list is PageContent.jsp. This template makes heavy use of some JSP tags im-
plemented in the JSPWiki engine (wiki:AttachmentsIterator, wiki:LinkTo and
wiki:PageInfoLink) in order to iterate over the attachments and, for every �le,
it creates the link to it.

The simplest way to add semantic information about every attachment is
to develop a new JSP tag and to put it in the template, between the iterator
tags. In order to query the ontology for the meta-data linked to an attachment,
this tag needs two parameters: the attachment name and the page name. Since
we can extract the page name automatically, the tag requires only a single
parameter.

The developed tag is called wiki:AddSemantic, and is implemented in the
AddSemanticTag class that extends WikiTagBase. It uses the object-oriented

CHAPTER 2. IMPLEMENTATION DETAILS 13

Figure 2.1: A page showing metadata related to its two attachments.

JENA API (the same method used for storing information in the previous sec-
tion) to read the ontology. After the model has been created it searches for the
appropriate �le entry and cycles between its properties, in order to retrieve the
meta-data associated to it. If a speci�c meta-data is not present, then it creates
an update form (which will be discussed later) that a user can �ll.

The last thing we had to do is to put an entry for our JSP tag in WEB-
INF/jspwiki.tld (in the JSPWiki deployed directory): it's an XML �le that
implements the JSPWiki tag library.

2.5 Updating Meta-data

While visualizing attachments' information we could incur in an attachment
that misses some of the meta-data entries: if that is true, we have to provide a
method for completing the entry.

A typical (and most used) way of asking the user for information is an
HTML form. We decided to make an input form for every missing piece of
meta-data. The forms passes the information gathered to a custom-built JSP
page, MetaUpdater.jsp, that employs the JENA object-oriented approach (the
same method used for insertion and visualization) and inserts the new meta-data
in the ontology, linked to the appropriate �le.

In order to identify the �le entry we need to update, the updater page must
know what �le it has to look for and which page it belongs to. Furthermore, it
also needs to know what kind of meta-data He needs to create and its new value.
Between these four parameters only the last one is provided by the user: the
other three are already used to search for the �le and the meta-data instances
in the AddSemanticTag code; we could thus reuse them from there.

CHAPTER 2. IMPLEMENTATION DETAILS 14

Figure 2.2: The results of a successfull update.

The three search parameters are sent to the updater page via hidden input
box (an approach widely used in HTML forms). Their identi�ers are:

metaType: refers to the ontology modelled class of the meta-data that will be
inserted;

className: refers to the �le name (not the JSPWiki versioned one) of the
attachment in question;

pageName: refers to which wiki page has the �le attached to.

The fourth parameters, whose key is newVal, is typed by the user in an input
box.

The �rst thing the updater page does is to check if all the parameters are
present. Then it loads the ontology creating its model using the JENA API and
uses className and pageName as search keys to look for the object representing
the �le instance. If the object is found, it creates a new individual of class
metaType and value newVal, links the two instances together and saves the
ontology. If there were no errors, it displays a link to the previous page, where
the meta-data information displayed will be updated. If not, it visualizes an
error message.

2.6 Knowledge Base Query

To implement search in semantic wiki pages we decided to give user the maxi-
mum freedom: he can search for every peace of information about every attach-
ment �le in every wiki page and from every wiki page.
The solution has been implemented in the most portable mode possible.
First we modi�ed the left menu adding a new link that, once clicked, brings the
user in a new wiki page from where he can specify his query. Being the left
menu in every page, it gives users the possibility to perform a search operation
from any page in any moment.
This new page has been realized creating a �le Query.txt that is recalled from
JSPWiki engine on page upload. This �le contains the call to a Java plug-in
whose job is to create a text box in the page, in which the user can write the
query, and a button that, once clicked, brings in the response page.
To show the query results we created a JSP page called Query.jsp (which, being
a JSP page, contains Java code mixed with HTML code). This is a replica of
Wiki.jsp (which is the one used by JSPWiki to show every wiki page) but with

CHAPTER 2. IMPLEMENTATION DETAILS 15

Figure 2.3: The left menu showing the additional query for metas link.

Figure 2.4: The query page, showing a sample query ready to be executed.

CHAPTER 2. IMPLEMENTATION DETAILS 16

Figure 2.5: The results given by the execution of the previous query.

some additional routines: in fact, it doesn't take wikitext as an input and con-
verts it into HTML, but it takes the query writ ten by the user and shows the
query results. To accomplish this task, inside this page we did not just use the
functions provided by the JSPWiki environment, but we also used the ontology
management and interrogation methods provided by the Jena libraries.

Chapter 3

Issues

While we were developing this project, several issues were discovered. As we
wanted to create only a proof of concept, we didn't correct al of them. Here we
will present some issues that are still unresolved:

• Albeit powerful, the object-oriented ontology model provided by JENA is
also sensibly slower than the SPARQL engine. We have tested it over a
small size ontology (something more than 100 instances) and it's not that
slow, but a typical wiki installation (∼1 million instances) could represent
a serious performance problem;

• When a �le is updated we zap all its properties away, but the meta-data
instances that were linked to it are still in the ontology. This could pose
a dangling reference problem, i.e. after the new version is uploaded and
inserted, we could have meta-data instances in the ontology that aren't
linked to a �le. We think that this problem could be solved by creating
inverse relations and crawling through them in the insertion phase, in
order to remove all the meta-data instances that have no association;

• The input the user provides when updating a �le's meta-data isn't checked
at all. This could pose serious security problems (think SQL-injection).
Thus, a sanitation function could parse the input in order to check if its
content is appropriate for the meta-data type it should represent;

• There could be some synchronization problem when several users attach
the same �le on the same page, or when several users update the same
meta-data �eld. This can happen because we use the object-oriented
JENA API, and should disappear if we switch it to a query-based lan-
guage (so that its engine would handle it).

• The Java code we have written isn't well engineered (in particular the
collectAndStoreMetadata method) and it needs a serious refactorization;

• The HTML forms described in the updating section are hard-coded in the
AddSemanticTag source code, which is an engineering �aw: if we want to
change the ontology model we have to modify the source and recompile

17

CHAPTER 3. ISSUES 18

it. A possible solution is to extract a template and place it in a separate
�le, �lling it on request;

• JHOVE can't handle information about video �les because there aren't
plug-ins that can handle them: following the best practices available on
JHOVE's site, one could write its own plug-in that manages a �le-type
(from identi�cation to meta-data extraction).

