
POLITECNICO DI MILANO
Corso di Laurea in Ingegneria Informatica
Dipartimento di Elettronica e Informazione

AI & R Lab
Laboratorio di Intelligenza Artificiale
e Robotica del Politecnico di Milano

Nonphotorealistic Rendering of

Speed-Lines

Teacher: Prof. Vincenzo Caglioti
Tutor: Ing. Alessandro Giusti

Elaborato di:
Marco BRANCA, mat. 707173

Lorenzo CAMERINI, mat. 706788

Anno Accademico 2007-2008

Contents

1 Non-Photorealistic speed and motion lines 4

2 Implementation 6
2.1 Description of the algorithms 6

2.1.1 Separation between background and foreground 7
2.1.2 Speed-lines construction 8
2.1.3 Transparency . 10

2.2 Results . 11

Bibliography 14

1

Introduction

In this document we are going to show what speed-lines are and how they
are synthesized.

In particular we focused in two main families of lines: speed-lines and
motion-effect-lines. The first type is usually used to give to the user the
sensation of objects’ speed in single frames. The second one, instead, is
used to reproduce in a single frame the idea of the complete movement of
objects.

In the first family we can distinguish three main techniques which are
shown in Figure 1:

• Speed-lines following objects

• Speed-lines across the screen

• Perspective speed-lines

(a) (b) (c)

Figure 1: (a) Speed-lines following objects; (b) Speed-lines across the screen; (c)
Perspective speed-lines

In the second family we identified other three techniques which are shown
in Figure 2:

• Tracking curves

• Replication of contours

• Replication of character

CONTENTS CONTENTS

(a)

(b)

(c)

Figure 2: (a) Tracking curves; (b) Replication of contours; (c) Replication of character

Finally, there are two techniques aiming to represent both speed and
complete movements and we show an example in Figure 3:

• Jagged contour

• Style-change of contours

(a) (b)

Figure 3: (a) Jagged contour; (b) Style-change of contours

Chapter 1

Non-Photorealistic speed
and motion lines

Speed-lines following objects

This technique consists in drawing lines starting from specified vertexes of
the moving object. The vertexes can be selected by the user or tracked from
different frames. In the first case it is necessary to know the position of
the selected vertexes in all frames. For this reason it can be achieved only
using 3D development tools, like Blender and Maya that allow the user to
know the exact position of the vertexes in every moment. In the second
case, instead, it’s necessary to use feature extraction algorithm in order to
find the position of specific targets inside the frames. Once you know the
position of the moving object, you can easily add speed-lines to original
frames [2, 1].

Speed-lines across the screen

This technique consists in positioning a plane that contains the subject of the
scene. Once you have this plane, you can draw speed-lines horizontally. In
order to obtain the flickering effect, speed-lines need a visibility timing which
makes them appear and disappear repeatedly during the animation [2].

Perspective speed-lines

This technique can be divided in two kinds of effects. The first one consists
in selecting a moving subject and drawing lines from the camera plane to the
selected subject. Note that the camera must always be in front of the object.
The second one consists in drawing the camera path during the animation
without pre-selecting the subject of the scene. Note that the camera must
still follow the moving object in order to get a satisfying effect, otherwise
speed-lines would be useless [2].

4

Chapter 1. Non-Photorealistic speed and motion lines

Tracking curves

This technique applies spline interpolation among several points representing
the position of specified vertexes across different frames [1].

Replication of contours

This technique consists in drawing the moving object’s edge opposite to
the direction of the movement. Besides, it’s possible to manually set the
frequency of the repeated edges during the animation [1].

Replication of characters

This technique is equivalent to the previous one, but it draws the entire
object and not only its edges. In order to get a good effect it works on the
transparency level of the object. In such a way, the farthest frame in time
will have the greatest degree of transparency [1].

Jagged contours

This technique consists in identifying the desired contours and using a
jagging algorithm to change the shape of the identified contours. Specifying
the maximum and minimum height of jags we can also obtain a variation of
the speed-effect given to the frame [1].

Style change of contours

This technique consists in replacing the points of the front edges with short
lines. Specifying the maximum and minimum length of lines we can also
obtain a variation of the speed-effect given to the frame [1].

Chapter 2

Implementation

In this chapter we describe the implementation of three different algorithms
that allow us to draw Speed-lines directly inside a video. We suppose
to work with video with a clear separation between a moving foreground
and background. The next sections will describe the different technique we
implemented, providing different examples of how these algorithm work and
the kind of results we have been able to find.

2.1 Description of the algorithms

In this section we show three different algorithms that, once applied directly
on a video, allow us to get three kinds of Speed-lines. We decide to parametrize
all the algorithms in order to let them as flexible as possible and allowing
the users to experiment with their own videos and reach the desired output.
The parameters we take into consideration are:

• Track length: Fixed a frame this parameter indicates how many frames
we have to consider, behind the fixed frame, during the computation;

• From/To frame: Indicates the frame interval to be analyzed within
the video;

• Sampling rate: Indicates how often the algorithm must consider a
frame between the ”‘From/To frame”’ parameter;

• Flickering factor: This is a probability that indicates whether consider
a frame or not during computation (higher probability means not to
consider most of frames in From/To frame range).

Notice that these parameters are general and thus they can be used in all
the algorithms we implement.
We develop three different algorithms:

1. Envelope Algorithm

6

2.1. Description of the algorithms Chapter 2. Implementation

2. Replication of Contours Algorithm

3. Harris Algorithm

In order to focus on the moving object, these algorithms start separating
the background form the foreground of every single frame of the video.
The Envelope algorithm finds and draws the common points between the
edge of two consecutive frames of the moving object. This algorithm uses a
special parameter that characterizes the shape of the object that we use to
delete every common point we find. This is an important parameter because
it allows the user to realize different style of the Speed-line.
The Replication of Contours algorithm consists in drawing the moving object’s
edges behind the object itself. This technique is equivalent to the one
described in Chapter 1. Notice that experimenting with the Track length,
Sampling rate and Flickering factor can significantly modify the feeling of
the object’s speed perceived from the beholder.
The Harris algorithm use the well-known technique of Harris Corner Detection
in order to find the corners of the moving object and drawing them behind
the object itself. This technique can be used only with objects that have
rough-edge shapes in order to find enough corners that can compose the
objects’ wake.

During the implementation of these algorithms we experiment also with
the transparency level in every frames in order to get a final image that
represented the entire movement of the object.
The next sections describe in more details the algorithms, focusing on every
single step that leads us to the final computation of each algorithm, then
we show some results obtained using the implemented techniques.

2.1.1 Separation between background and foreground

The first phase of the algorithm consists in separating the foreground from
the background in order to find corners and edges of the subject’s shape.

In order to obtain this result, we worked on the first frame of the movie:
in fact we have movies with flat background and, we can easily separate the
subject from the background once we have found its color.

The following steps allow us to obtain the desired result:

1. Conversion of the RGB image to the gray-scale image;

2. Dilation of the obtained gray-scale image;

3. Conversion of the dilated image to a binary image according to a fixed
threshold;

4. Multiplication between the original first frame and the obtained mask;

5. Research of one non-black pixel and identification of its color;

2.1. Description of the algorithms Chapter 2. Implementation

6. Creation of frames with black pixel corresponding to the background
and white pixels corresponding to the foreground.

In Figure 2.1 are shown some images obtained with the algorithm described
above fore background-foreground separation.

Figure 2.1: Frames where the separation background-foreground algorithm has been
applied

2.1.2 Speed-lines construction

Replication of contours

This technique consists in reproducing the movement by drawing the contours
of the subject in the previous frames.

In order to detect edges, the Canny algorithm is applied to the masks
obtained during separation of the foreground from the background.

The algorithm can be described with the following steps:

1. Edge detection in all frames of the movie;

2. For each frame:

(a) Building of the track taking into consideration the number of
masks specified by the user;

(b) Adding the computed mask to the frame.

In Figure 2.2 are shown some results obtained in the sample movies with
the edge detection algorithm.

Figure 2.2: Edges found with Canny Algorithm in different movies’ frames

2.1. Description of the algorithms Chapter 2. Implementation

Besides, according to the preferences of the user, it is possible to take
into consideration sets of frames of different cardinality: larger sets imply
longer tracks in the movie and, also, faster movements.

In Figure 2.3 are shown some results obtained by composing different
frames’ edges during track construction.

Figure 2.3: Tracks obtained adding several edge masks

Finally, the resulting mask is added to each frame, drawing a white pixel
for each pixel corresponding to the computed mask. The final result is shown
in section 2.2.

Envelope

This technique is an eveloution of the one described above. In particular,
it is obtained starting from the edges found with the Canny algorithm, but
the track is composed by combining the intersection of couples of adjacent
frames.

The algorithm can be described with the following steps:

1. Edge detection in all frames of the movie;

2. Construction of a vector of masks obtained by intersecting couples of
adjacent masks;

3. For each frame:

(a) Building of the track taking into consideration the number of
masks specified by the user;

(b) Adding the computed mask to the frame.

In Figure 2.4 are shown some results obtained by intersecting a couple of
masks representing the edges of the image computed separating the foreground
from the background of the frames.

2.1. Description of the algorithms Chapter 2. Implementation

(a) (b) (c)

Figure 2.4: Masks obtained by intersecting couples of edge masks in different sample
movies. Notice that in movies with a very slow movement (c), the intersection of the
edges is almost equivalent to the edges themselves.

The whole track added to each frame is obtained adding a number of
the masks shown above according to the preferences of the user. The results
are shown in Figure 2.5.

Figure 2.5: Tracks obtained adding several computed masks

Harris

The Harris algorithm uses the well-known technique of Harris Corner Detection
in order to find the corners of the moving object and drawing them behind
the object itself. This algorithm can be schematized in these steps:

1. Extract the desired frames form the video indicated with the From/To
parameter.

2. Separates the background from the foreground obtaining a binary
image;

3. Finds the corners using the Harris Corner Detection technique;

4. Add the track to the original video;

2.1.3 Transparency

Transparency can be applied to all the techniques described above. The
purpose of transparency is to make more recent tracks stronger then the
older ones.

2.2. Results Chapter 2. Implementation

This effect is realized by using the alpha channel applied to the RGB
channels of the image. Since the alpha channel is a peculiarity of only some
image formats, we decided to use PNG images to visualize the final effect.

The matrix representing the alpha channel is a bi-dimensional matrix
composed of an entry for each pixel of the original image. The number
composing the image are double values in range [0,1], where 0 means complete
transparency and 1 means complete opacity.

When transparency is not chosen by the user, the matrix representing
the alpha channel is composed only by 1s. In the other case, the matrix is
computed following the steps described below:

1. Consider the binary mask vector calculated as described in 2.1.2;

2. Initialization of the alpha-channel matrix to 0s;

3. For each mask in the vector:

(a) Compute the multiplying factor as: (vector length−index of mask in vector)
vector length ;

(b) Multiply the mask for the multiplying factor;

(c) Add the obtained mask to the current partial transparency matrix.

4. Compute the subtraction 1 - alpha-channel matrix.

In Figure 2.6 are shown the alpha channels obtained applying the algorithm
described above on different kind of movies.

Figure 2.6: Alpha channels obtained with transparency computation

2.2 Results

In this last section are shown the results of the algorithms described in
the previous sections. In particular, you can notice that, according to the
kind of subject, some techniques are better than other ones. For example,
geometric figures like cube are very suitable to be treated with the Harris
technique described in Section 2.1.2, while, round shapes can’t be treated
with the same technique.

2.2. Results Chapter 2. Implementation

In Figure 2.7 are shown the results obtained with a rounded shape
subject movie. The Harris technique has not been applied because the
corner detection algorithm cannot find any corners because of the subject’s
nature.

(a) (b) (c)

(d) (e) (f)

Figure 2.7: Results of the algorithm applied to a frame of a ball: (a) original frame, (b)
Replication of Contours Technique, (c) Replication of Contours with transparency, (d)
Envelope technique with disk dilation, (d) Envelope technique with disk dilation and
transparency, (f) Envelope technique with line dilation.

In Figure 2.8 are shown the results obtained with the corner detection
algorithm applied to a cube. In this case, the presence of corners allow to
obtain good results with Harris technique.

Figure 2.8: Application of the Harris algortithm in the building track phase.

In Figure 2.9 are shown the results obtained with a more complex shape
subject movie. Also in this case, the subject’s shape does not contain corners

2.2. Results Chapter 2. Implementation

and the Harris technique results not to be adequate to the movie.

(a) (b) (c)

(d) (e) (f)

Figure 2.9: Results of the algorithm applied to a frame of a cartoon character: (a)
Replication of Contours Technique, (b) Replication of Contours with transparency, (c)
Envelope technique with disk dilation, (d) Envelope technique with disk dilation and
transparency, (e) Envelope technique with line dilation, (f) Envelope technique with
line dilation and transparency.

Bibliography

[1] Ying-Hua Lai et al. The synthesis of non-photorealistic motion effects
for cartoon. August 2005.

[2] Won Chan Song. Speed lines for 3d animation. December 2005.

14

