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Facoltà di Ingegneria dell’Informazione
Polo regionale di Como

Corso di Laurea Specialistica in Ingegneria Informatica

A PREDICTIVE SPELLER FOR A

BRAIN-COMPUTER INTERFACE

BASED ON MOTOR IMAGERY

AI & R Lab

Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Relatore : Ing. Matteo Matteucci

Prof. Licia Sbattella

Correlatore: Ing. Rossella Blatt

Ing. Roberto Tedesco

Tesi di laurea di: Tiziano D’Albis

Matr. 707766

Anno Accademico 2008/09





Ai miei genitori e ai miei nonni. . .





Acknowledgments

This thesis is the result of a long but exciting work started in May 2008

and concluded in June 2009. During all this time many people have been

involved in different ways in the development of this thesis. I hope to be

able to remember everyone, since my memory is not so good.

First I have to acknowledge the team of four persons who guided me over

all the development of this thesis giving me lots of precious suggestions: Mat-

teo Matteucci, Licia Sbattella, Rossella Blatt and Roberto Tedesco. Special

thanks to Rossella for all the encouragements and all the time dedicated in

this long period.

Many thanks to Fabio B., Francesco, Fabio Z. and Paolo who shared

with me many long days in the AirLab and mounted hundreds of times the

same electrodes’ cap, struggling with my long hair and the always too high

impedances. I will be always extremely devoted to Paolo for joining our

group, since with his great EEG signals saved the results of my thesis (and

not only mine).

My acknowledgments are also for Matteo Vescovi, who developed the

framework I’ve used for text prediction and gave me a lot of hints during

the development of this thesis. Thanks also to all the developers of BCI2000

and especially to G. Shalk, who answered very kindly to all the questions I

posted on the BCI2000 forum.

Of course I can’t forget to acknowledge all my friends, who supported

and motivated me during all the duration of this work and helped me to stay

far from a monitor for a decent amount of time. Therefore many thanks to

(in random order): Melania, Cinzia, Laura, Tostao, Martino, Diego, Bosco,

Auro, Sarino, Smilzo, Mariano, Carlo, Tati, Chiara, Betty, Ines, Meli, Giu-

lia and Bore. Thanks to all the members of the youth association I belong

(Tricheco) who forgave me for being sometimes absent mounting and dis-

mantling stages, big tops and whatsoever. Thanks also to Federico who

encouraged me in choosing this thesis topic and to Cela and Maddy, re-

membering all the time spent together on the train. Thanks also to my

7



employer for giving me all the time I needed for this thesis and to all my

colleagues for supporting me in this work, special thanks to Claudio for his

encouragements.

Finally I want to acknowledge my parents and my sister for being always

very kind and helpful with me (even when I returned tired and nervous from

the lab) and for supporting me in all the decisions I took so far.



Abstract

Communication is at the basis of human development and represents a fun-

damental aspect in the life of every individual. Persons suffering of motor

disorders have limited possibilities to communicate and normally require

assistive technologies to fulfill this primary need. A promising means to

give back basic communication abilities to subjects affected by severe motor

impairments are brain-computer interfaces (BCIs). A brain-computer inter-

face is a system that bypasses any muscle or nerve mediation and translates

signals acquired from the brain into commands for an external device. BCI

systems are normally characterized by poor accuracies and low rates of infor-

mation transfer, while communication is a complex process which requires

a large set of language symbols to convey messages.

The objective of this thesis is to develop a BCI spelling application for

people with severe motor impairments, adopting Natural Language Pro-

cessing (NLP) techniques to enhance the overall communication rate of the

system. The BCI paradigm adopted is motor imagery. When the subject

imagines to move a certain part of the body, he/she produces modifications

to specific brain rhythms over the sensory-motor cortex which are detected

in real-time from the electroencephalogram (EEG) and translated into com-

mands for the spelling application. The approach chosen for maximizing

the overall communication rate is two-fold: on one side there is an effort

in gaining information transfer rate from the control signal, on the other

side there is an effort in optimizing the way this information is employed

for the purpose of verbal communication. Therefore this thesis focuses both

on the definition of novel features for classifying EEG signals and on the

design of an original spelling application provided with language prediction

capabilities.

The achieved results are very satisfactory and comparable with the latest

works about motor-imagery BCI spellers reported in literature. For the three

subjects considered we reached a spelling speed of respectively 3 char/min,

2.7 char/min and 2 char/min.
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Sommario

La comunicazione è alla base dello sviluppo umano e rappresenta un aspet-

to fondamentale nella vita di ciascun individuo. Persone che soffrono di

disabilità motorie hanno limitate capacità di comunicare e normalmente

necessitano di tecnologie assistive per soddisfare questo bisogno primario.

Una possibilità promettente per restituire capacità comunicative di base a

persone affette da gravi disabilità motorie è rappresentata dalle interfac-

ce cervello-computer (BCI). Una interfaccia cervello-computer è un sistema

che, non necessitando di alcuna mediazione muscolare o nervosa, permette

di tradurre segnali acquisiti dal cervello in comandi per dispositivi esterni.

I sistemi BCI sono normalmente caratterizzati da una scarsa accuratezza e

da una bassa velocità nel trasferimento delle informazioni, mentre la comu-

nicazione è un processo complesso che richiede un insieme ampio di simboli

linguistici per la trasmissione dei messaggi.

L’obiettivo di questa tesi è quello di sviluppare una applicazione di spel-

ling BCI per persone con gravi disabilità motorie, adottando tecniche di

processamento del linguaggio naturale (NLP) per aumentare la velocità di

comunicazione del sistema. Il paradigma BCI adottato è quello dell’imma-

ginazione del movimento. Quando un soggetto immagina di muovere una

determinata parte del corpo induce delle alterazioni a specifici ritmi cere-

brali caratteristici della corteccia sensomotoria che vengono riconosciuti in

tempo reale dall’elettroencefalogramma (EEG) e tradotti in comandi per

l’applicazione di spelling. L’approccio scelto per massimizzare la velocità di

comunicazione è duplice: da una parte si cerca di estrarre la maggior quan-

tità di informazione dal segnale di controllo, dall’altra si cerca di ottimizzare

il modo con cui questa informazione viene utilizzata per la comunicazione

verbale. Questa tesi si concentra quindi sia sulla definizione di nuove fea-

ture per la classificazione del segnale EEG, sia sulla progettazione di una

applicazione di spelling originale dotata di funzionalità per la predizione del

linguaggio.

I risultati ottenuti sono molto soddisfacenti e paragonabili ai lavori più
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recenti riportati in letteratura riguardo agli speller BCI basati su imma-

ginazione del movimento. Per i tre soggetti considerati abbiamo ottenuto

una velocità di comunicazione rispettivamente di 3 caratteri al minuto, 2.7

caratteri al minuto e 2 caratteri al minuto.
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Chapter 1

Introduction

“Our knowledge can only be finite, while our ignorance must necessarily be

infinite.”

Karl Popper

The ability to communicate with other people is one of the main factors

making the life of any human being enjoyable. Communication is at the

basis of human development and makes it possible to express ideas, desires

and feelings. Individuals suffering of motor disorders have limited possibili-

ties to communicate and normally require assistive technologies to fulfill this

primary need. Some people may have lost completely the control over vol-

untary muscles, while being fully conscious and aware of what is happening

in their environment. This is the case of patients affected by the so called

locked-in syndrome which is normally caused by lesions to the brain-stem or

by neuro-degenerative diseases. Clearly, the quality of life of persons affected

by the locked-in syndrome is strongly diminished by the lack of possibilities

to communicate and by the complete loss of autonomy.

A promising means to give back basic communication abilities to these

persons are brain-computer interfaces (BCIs). A brain-computer interface

is a system that bypasses any muscle or nerve mediation and translates

signals acquired from the brain into commands for an external device. There

are different ways to measure brain activity and several neurophysiological

phenomena may be exploited to extract information from it. The most

common approach is electroencephalography (EEG), in which the electrical

activity induced by brain neurons is sensed through electrodes placed on the

scalp. Different internal and external events may cause different patterns

in the EEG signals that have been studied for the purpose of BCI control.

Employing signal processing and machine learning techniques, indeed, these
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patterns can be detected in real-time and translated into control signals.

BCI systems are normally characterized by low rates of information transfer

and their accuracy can vary significantly from subject to subject and across

different acquisition sessions. Therefore applications controlled with these

interfaces should be designed in order to minimize the number of input

commands required and to be robust to errors.

Finally communication is a complex process which normally requires a

large set of language symbols to convey messages. Mapping this large set

of symbols into a limited number of input commands is one of the major

challenges that assistive communication devices need to face. On the other

side natural language encodes messages in a redundant way and verbal com-

munication is characterized by recurrent structures imposed by grammatical

and syntactical rules. Therefore Natural Language Processing (NLP) tech-

niques could be employed to exploit language redundancies and improve the

performances of these communication devices.

1.1 Objectives of the thesis and original contribu-

tions

The objective of this thesis is to implement a BCI spelling application for

people with severe motor impairments, adopting natural language process-

ing techniques to improve the overall communication rate of the system. The

target users of this application are subjects affected by severe motor disor-

ders and in particular patients affected by the locked-in syndrome. Com-

munication is performed detecting different mental states from the subject’s

EEG and translating these states into input commands for a spelling appli-

cation.

The BCI paradigm adopted is motor imagery. When the subject imag-

ines to move a certain part of the body (such as a hand or a foot) pro-

duces modifications on specific brain rhythms characteristic of the motor-

cortex. These modifications are detected in real-time from the EEG signal

and mapped into different choices in the spelling application. This kind of

communication is typically very slow and prone to errors. The EEG signal

recorded from the scalp has indeed a low signal-to-noise ratio, can be affected

by a number of artifacts and presents significant variability with different

acquisition settings. Moreover the neurophysiological phenomena related to

motor imagery manifest differently with different subjects and may also be

influenced by the particular psychophysical conditions met during the task.

All these factors affect the performances of the brain-computer interface.
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The control signal received by the spelling application is indeed characterized

by low information transfer rates and low accuracy levels. This is the major

problem that this thesis had to face, being the final objective of this work

to obtain a BCI system suitable for effective verbal communication. The

approach chosen in order to maximize the overall communication rate is

two-fold: on one side there is an effort in gaining information transfer rate

from the control signal, on the other side there is an effort in optimizing the

way this information is employed for the purpose of verbal communication.

Dealing with the first problem, this thesis focuses on the design of novel

features extracted from the EEG signal in the frequency domain and on the

adoption of different machine learning techniques for feature selection and

classification. Dealing with the second problem, instead, we designed an

original speller interface in which redundancies in natural language are used

to speedup the selection of symbols and word suggestions are provided to

the user during the composition.

The spelling application developed is thus composed of three main mod-

ules: the brain-computer interface, the speller interface and the language

prediction module. Each module has been designed, implemented and tested

specifically for the objectives of this thesis and the results have been evalu-

ated at different levels. First we assessed the performances of the BCI mod-

ule alone, both offline (with pre-recorded signals) and online (with signals

acquired and classified in real-time). Then we evaluated the performances of

the spelling interface with a simulator program (implemented for the pur-

pose) and we assessed the impact of classification accuracy and language

predictions on the overall system performances. Finally we tested the whole

BCI spelling application online considering different subjects and different

acquisition sessions.

The achieved results are very satisfactory and comparable with the lat-

est works about motor-imagery BCI spellers reported in literature [8]. With

one subject we obtained high classification accuracies and the overall com-

munication rate achieved is 3 char/min. With other two subjects, instead,

we started with lower classification accuracies, but significant improvements

have been obtained as the number of training sessions increased. These sub-

jects reached a spelling speed of respectively 2 char/min and 2.7 char/min.

A trend of performance improvement has been observed in our tests and

we believe that with more feedback sessions an even better BCI control could

be obtained. Further improvements may be also achieved considering EEG

features in the spatial domain (for example with the method of Common

Spatial Patterns) and testing other classification algorithms. Moreover al-

ternative symbol arrangements may be investigated in order to speedup the
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selection process and the accuracy of language predictions could be improved

by means of customized language models.

1.2 Structure of the thesis

In the following paragraphs we present the outline for the remaining chapters

of this thesis. The thesis is structured as follows:

• Chapter 2 summarizes the state of the art in the fields of assistive

communication and statistical language modeling. The chapter starts

with a brief description of the locked-in syndrome and the first part

presents the research field of Augmentative and Alternative Communi-

cation (AAC), with particular emphasis on communication devices for

people with severe motor impairments. The second part is about Nat-

ural Language Processing (NLP) and reviews the main techniques em-

ployed to compute language predictions by means of statistical models.

• Chapter 3 deals with the state of the art in the field of brain-computer

interfacing. A generalized BCI system is first presented along with

the main components involved. Then, an overview of the main signal

acquisition techniques is reported and the neurophysiological phenom-

ena normally employed for BCI control are described. The subsequent

sections explain in more details all the phases involved in EEG signal

processing, while the last part deals with the role of feedback and the

main control paradigms adopted in brain-computer interaction.

• Chapter 4 presents the overall model of the BCI spelling application

developed for this thesis. The main system modules are described

along with their interactions and dependencies. In the last part the

application protocol chosen is explained.

• Chapter 5 describes the BCI module that translates EEG signals into

commands for the spelling application. All the algorithms involved

in this translation are described in details: spatial filtering, spectral

estimation, feature computation, feature selection, feature extraction

and classification.

• Chapter 6 presents both the speller interface module and the predic-

tion module. Dealing with the interface, the set of symbols chosen,

the symbol selection strategy and the problem of handling errors are

first discussed. Then, a general model to define user interfaces for the
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speller is proposed and three different interfaces are presented. Deal-

ing with the prediction module, we describe the training corpus, the

statistical language model and the algorithms used to provide language

predictions to the spelling application.

• Chapter 7 describes all the experiments and the tests performed for

this thesis along with a discussion on the results obtained.

• Chapter 8 summarizes the whole thesis work reporting some final con-

siderations and suggestions for future developments.
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Chapter 2

Assistive communication and

text prediction

“Io non mori’, e non rimasi vivo;

Pensa omai per te, s’hai fior d’ingegno,

Qual io divenni, d’uno e d’altro privo.”

Alighieri Dante, Divina Comedia, Inferno XXXIV, 25-27

This chapter summarizes the state of the art in the fields of assistive

communication technologies and statistical language modeling for text pre-

diction. The chapter starts with a brief description of the locked-in syndrome

(Section 2.1), being this a neurological disorder that causes a complete loss

of motor control and motivates the use of brain-computer interfaces as a

communication channel. In Section 2.2 we introduce the research area of

augmentative and alternative communication and we discuss the main as-

sistive technologies available for subjects affected by motor impairments.

Finally, Section 2.3 deals with statistical language modeling techniques for

text prediction. These techniques have been employed to improve the com-

munication rate of our BCI spelling application.

2.1 Locked-in syndrome

The target users of the spelling application developed for this thesis are sub-

jects affected by severe motor disorders and in particular patients affected

by the locked-in syndrome.

The locked-in syndrome (LIS) is a rare neurological disorder character-

ized by a complete paralysis of voluntary muscles. Individuals with locked-in

7
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Figure 2.1: Brain stem

syndrome are conscious and can think and reason, but they are unable to

speak or move.

Locked-in syndrome should not be confused with persistent vegetative

state. A patient in a persistent vegetative state has suffered damage to the

upper portions of the brain that affect cognitive processes and self-awareness.

It is possible for such a person to move, but not to think, experience emo-

tions, or intelligently respond to external stimuli. In contrast, the locked-in

syndrome is caused by damage to the lower portions of the brain. While

damage to these brain sections affects muscle control, it does not affect

patients’ ability to think and reason.

In “classic” locked-in syndrome, vertical eye movements as well as eye-

blinks remain intact, whereas in the “total” locked-in syndrome, patients

lose all ability to move and communicate [1]. There are many different

causes that may lead to a complete locked-in state [48]. The main ones are

related to tumors, encephalitis and lesions of the brain stem, particularly if

the pons or parts of the ventral midbrain are damaged (see Figure 2.1).

A total motor paralysis can be caused also by degenerative neuro-muscolar

diseases, the most frequent being Amyotrophic Lateral Sclerosis (ALS).

Amyotrophic lateral sclerosis involves a steadily progressive degeneration

of central and peripheral motoneurons. Usually it begins with the paral-

ysis of the lower extremities and then moves onto hands and arms, finally

paralyzing breathing and swallowing as well as facial muscles. Most often,

people affected by ALS, can still control eye muscles and few facial muscles

till the late stages of the disease, however there are also cases [28] in which

absolutely no remaining muscular activity is retained.

Quality of life in ALS patients is surprisingly high and within the range

of patients with non-fatal diseases [39]. However an important component



2.2. Augmentative and Alternative Communication 9

of individual quality of life repeatedly mentioned by patients, specifically if

the disease progresses, is the ability to communicate.

The possibility to communicate emotions, thoughts and needs is thus

a primary requirement for locked-in patients and many efforts have been

made in the last years to open a communication path between them end the

external world.

2.2 Augmentative and Alternative Communication

Augmentative and Alternative Communication (AAC) is an area of clinical

practice that attempts to compensate either temporarily or permanently for

the impairment and disability patterns of individuals with severe communi-

cation disorders. The term augmentative refers to the process of augmenting

existing speech abilities, while the term alternative refers to the process of

providing a substitute for speech [25].

Augmentative and alternative communication strategies are categorized

in unaided and aided. Unaided methods are those that do not require any

external device for their use. They consist of nonverbal means of natural

communication such as gestures, signed languages and vibrotactile codes.

Aided communication methods require, instead, the use of tools or equip-

ments in addition to the user’s body. Aided communication methods can

range from using paper and pencil to the adoption of sophisticated bioengi-

neering technologies.

Augmentative and alternative communication embraces a broad area of

disciplines, from rehabilitation engineering, education science and linguis-

tics to biomedical and computer engineering. Moreover a huge variety of

communication disorders exist, ranging from cognitive problems or limited

motor problems to severe motor disabilities and total paralysis.

This section presents the main paradigms and technologies for aided

AAC systems employed in cases of motor disorders, with particular attention

to subjects in a locked-in state.

2.2.1 Generalized aided AAC system

The ultimate goal of AAC is to enable impaired subjects to communicate

with the external world. This problem can be divided in two different tasks:

• establishing an efficient and reliable information channel from the pa-

tient to the outer world;
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Figure 2.2: Generalized AAC system

• finding the best way to exploit this channel (that is normally noisy,

inefficient and unreliable) to enable human communication.

The first task basically consists in finding technological solutions to ex-

ploit the residual capacities of the patient with the goal of transferring in-

formation. This involves studying suitable physiological phenomena and

implementing devices to extract a control signal from these phenomena.

The second task, instead, involves choosing a set of communication sym-

bols, mapping these symbols with the control signal, and eventually exploit

redundancies in communication to increase the efficiency of the whole sys-

tem.

Even if the two tasks are well distinguished, there are some dependencies

between them. It is indeed quite difficult to solve the second part of the

problem if no information about the input channel is available. The most

important piece of information required is obviously the type of control

signal (continuous or discrete), but also the transmission rate and the overall

reliability of the channel are very useful data. Finally, even during the design

of the first part of the problem, there should be an idea on how the produced

control signal will be used by the final application.

2.2.2 Acquiring the control signal

Many different technologies have been developed to acquire control signals

from motor-impaired subjects. The characteristics of the output signals and

the complexity of the systems are very different depending on the actual

residual capabilities of the patient.

For patients retaining the capability of partially moving the hands or at

least one finger, special keyboards are available on the market [30]. These

keyboards can have larger or smaller keys, provide alternative key configu-

rations, or be equipped with removable overlays adapting the device to the

specific needs of the subject.
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(a) ALS Patient using an eye-tracking

device

(b) Patient using a sip-and-puff device

Figure 2.3: Devices for AAC

If hands’ movement is completely compromised, but other muscles can

be sufficiently controlled, it is possible to use tracking systems to map the

position of a chosen portion of the body (i.e., head, nose, chin, finger or toe)

into a continuous control signal in one or two dimensions [51] [2].

The same principle is also the basis for eye tracking devices [10] [17] [36].

An eye tracking device measures either the point of gaze or the motion of

an eye relative to the head. These systems can be used also by “common”

locked-in patients that usually retain only the control of ocular muscles.

There are basically three types of eye tracking devices:

• devices using an attachment to the eye, such as a special contact lens

with an embedded mirror or magnetic field sensor measuring the eye

movement;

• video based eye trackers, that typically use the corneal reflection and

the center of the pupil as features to track over time;

• devices based on the acquisition of the electro-oculogram (EOG), using

contact electrodes placed near to the eyes and measuring the variations

of the electrical potential field between the cornea and the retina.

Other input devices for AAC are based on a single switch being controlled

for example by an intentional muscle contraction or eye blink detection

[26]. For people who retain control of voluntary breath, sip-and-puff devices

are also available [55]. With these devices it is possible to measure small

variations of air pressure produced by “sipping” and “puffing” into a plastic

tube. These pressure variations can be either transduced into a continuous

control signal or used to activate a binary switch.

All these technologies are however precluded to subjects affected by “to-

tal” locked-in syndrome, because they require voluntary movement of at
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least one single muscle. For people that are completely paralyzed, instead,

the only way to interact with the external word is to intentionally induce

modifications of some physiological parameters (independent from muscular

activity) that can be measured and translated into control signals.

Several studies [19] showed that autonomic functions (i.e., hearth rate,

skin temperature) can be used to provide control signals to external devices.

Indeed, people with severe disabilities can learn, in some extent, to achieve

a voluntary control of these functions. However the very slow rate of respon-

siveness and the high metabolic noise of some autonomic responses, make

these strategies useless for precise and reliable communication [64].

Other biofeedback techniques, instead, have been proved to be successful

for such cases, these techniques fall in the area of Brain-Computer Interfac-

ing (BCI) [4]. A brain-computer interface is a system whose ultimate goal is

to establish a direct communication path between the brain and an external

computing device. These systems record brain activity and, exploiting dif-

ferent neuro-physiological phenomena (either event-related or self-induced),

can generate a control signal suitable for instrumental control. The output

signal can be either continuous, based on voluntary modulation of specific

brain waves, or discrete, when a classification algorithm is employed. For a

more detailed description of BCI techniques and paradigms refer to Chap-

ter 3.

2.2.3 From the control signal to human communication

Once a control signal is available as the output of any AAC device, this

reduced amount of information needs to be properly encoded for commu-

nication. Human communication is indeed a complex process and requires

the sender to properly encode its message in such a way that could be easily

decoded and understood by the receiver.

In verbal communication information is encoded in characters and words,

while non-verbal communication may use iconic symbols, gestures or facial

expressions to convey messages.

Common techniques in AAC often involve the use of iconic symbols

to enable communication. This is usually the case when communication

disorders are linguistic or cognitive. For patients with motor impairments,

instead, verbal communication is mostly used. Such users, indeed, would

normally prefer using their original language rather than learn an alternative

symbol system.

Whatever is the set of symbols adopted, the main strategies used to

access these symbols can be grouped into three broad categories: direct
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selection, scanning and encoding.

Direct selection

Direct selection allows the user access to all possible symbol choices at all

times. This could be achieved basically in two ways: either having an input

signal with as many states as the size of the output alphabet, or having a

reliable continuous control signal.

In the first case there is a simple one-to-one mapping between the control

signal and the output symbols. This is the fastest and most efficient strategy

to employ, but also the most difficult to apply with AAC devices. Indeed,

the number of different states distinguishable by these systems is normally

much lower than the number of symbols in the output alphabet.

With a continuous control signal, instead, symbols are graphically dis-

played on a screen and selections are performed controlling the movement of

a cursor. This strategy requires the user to control the cursor’s movement

with a sufficient precision and to keep the cursor idle for a while to confirm

the selection. Alternatively the final selection could be performed activating

a second binary switch controlled on a different channel.

Scanning

In scanning systems language elements, or groups of language elements, are

presented sequentially for selection by the communicator. What the user

is required to do is only to confirm o reject the proposed selection. These

systems are normally used when the control signal is generated by a binary

switch and only two different states can be distinguished.

There are different ways to present choices to the user for selection. The

simplest scanning methods are linear and circular scanning. Linear scanning

involves presenting symbol choices one at a time in a line by line pattern,

while circular scanning presents symbols following a circular pattern (see

Figure 2.4). Linear and circular scanning are cognitively easy to learn since

(a) Linear scanning (b) Circular scanning

Figure 2.4: Scanning methods for AAC
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they only require a one-step selection process. However, because all choices

need to be scanned one at a time, these methods are extremely slow and are

suitable only with a limited number of symbols.

In order to speed up the selection process, multiple symbol choices can

be simultaneously presented to the user. In row-column scanning rows of

symbols are first scanned sequentially until a selection is performed. The

user must then take a second switch activation when the desired symbol in

that row is presented.

Group-item scanning is a variation of row-column scanning that can take

different forms. Basically large groups of symbols are presented at once for

selection. When a group is chosen, the selected group is scanned again

recursively, until a single symbol is selected. It is also possible to combine

different techniques: for example using group-item scanning at the first level

and than row-colum scanning for successive group expansions. Group-item

scanning normally involves at least three or four selection steps and the

resulting selection process is more difficult to master.

Encoding

Another technique to map control signals into language symbols is encod-

ing. This is actually a variation of direct selection employed when more

symbols than input commands are available. Encoding strategies could be

used with either discrete or continuos control signals. With discrete signals

each element in the output alphabet is simply coded in a sequence of in-

put commands. Having for example a binary input and an alphanumeric

alphabet, the well known Morse code may be employed.

Even with continuous control signals encoding schemes can be very use-

ful. In many systems, indeed, the acquired signal is converted into cursor

movements, but this control is not precise enough to allow a direct selec-

tion. In these cases control points, movement directions or gestures may be

used to encode movement patterns into characters, words or any other kind

of symbol. Some examples of these coding techniques are the EdgeWrite

(based on control points) [66], and the Minimal Device Independent Text

Input Method (based on compass directions) [31].

Finally, grouping may be considered as an encoding strategy too. In

this case all available symbols are collected into a small number of groups

that are recursively expanded until a single element is selected. Indeed

each symbol results to be encoded in the sequence of groups that must be

expanded during the selection process. An encoding scheme is thus present,

but, being the user guided step by step in each proposed choice, the actual
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code is not explicit to him. A group selection may be performed either

with a discrete control signal or hitting a specific target with a cursor. In

the spelling application developed for this thesis we adopted and encoding

technique based on grouping. Further details about the symbol selection

strategy are reported in Section 6.1.2.

2.2.4 Improving the communication rate

Augmentative and alternative communication is generally much slower than

speech. With most commonly used AAC systems (such as adaptive key-

boards, joysticks, touchpad and trackballs) communication rate is often less

than 10 words per minute [44] [33], compared to about 150-200 words per

minute for unimpaired speech. If we consider more sophisticated AAC de-

vices, such as systems based on brain-computer interfaces, the communica-

tion rate lowers down to less than 5 characters per minute [7] [53] [62].

Different strategies have been proposed to increase the user’s rate of

output, and as a result to enhance the efficiency of communication. Some

techniques simply consist in encoding words, phrases or sentences as ab-

breviations, which are automatically expanded as they are entered in text.

Abbreviation expansion may be useful for very frequent words or phrases,

but applies rarely in context-free communication.

Other systems exploit information about characters’ frequencies in nat-

ural language to rearrange or encode symbols in a convenient way. For ex-

ample AAC devices employing scanning paradigms may rearrange symbols

in such a way that most frequent symbols are scanned first, thus reducing

the overall selection time [40].

More complex AAC systems employ Natural Language Processing (NLP)

techniques based on language modeling and language prediction in order to

improve the communication rate [15]. These techniques are used either to

predict the next probable character or to suggest the most likely word follow-

ing the current text. Predictions are computed combining statistical data

extracted from a collection of texts (the training corpus) with information

on the current composition context. They are typically based on frequency

tables, syntactic structure, semantic information or a combination of these.

Techniques based on word prediction are the most commonly employed

in AAC systems. In these systems a list of likely words is normally presented

for selection. The prediction list may vary in length and may be presented

in-line (appearing within the text being entered) or somewhere separately

on the user interface screen.

Obviously, adding predictive features in an AAC system can increase the
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communication rate, but may also introduce issues in user interfacing and

user interaction. Finally, in order to assess the actual benefit of language

predictions, many factors need to be taken into account, from the actual

number of selections saved to considerations about timings and cognitive

effort [59] [24].

In this work language prediction techniques based on statistical models

have been applied in order to enhance the performances of the spelling appli-

cation. Section 2.3 describes the models and the algorithms being considered

for this purpose.

2.3 Statistical language modeling for text predic-

tion

In order to predict the behavior of a system, first we need to build a model of

it. Statistical Language Modeling (SLM) employes concepts from statistics

and information theory to build probabilistic models of natural language.

There are two commonly used approaches in statistical language mod-

eling. The first one, mostly used in the field of speech recognition, models

natural language as a Markovian stochastic process in which each charac-

ter, word or text token is considered as a random variable with a certain

probability distribution. The second approach, commonly used in the field

of coding and compression, relies on information theory and models natural

language as a source of information emitting a sequence of symbols (words)

from a finite alphabet (the dictionary).

Many different language models have been employed for the purpose

of text prediction, most of them adopting Markov models and the Bayes

theorem in order to estimate the probability of a new word given the text

previously entered. As mentioned in Section 2.2.4, different levels of in-

formation can be employed to estimate these probabilities, starting from

frequency statistics to syntax information, phrase structure and semantics.

In the following section we focus on Markovian language models based

on frequencies, since these are the most commonly used models in the field of

AAC communication, and we present the models that have been employed

in this thesis.

2.3.1 Markov chains and N-grams

A Markov chain is a discrete stochastic process in which, given the present

state, future states are independent from past states (Markov assumption).
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In other words in a Markov chain the present state fully captures all the

information that could influence the future evolution of the process.

Formally a Markov chain is a sequence of random variables X1,X2, . . . ,Xn

such that:

P (Xt+1 = it+1|Xt = it,Xt−1 = it−1, . . . ,X0 = i0) = P (Xt+1 = it+1|Xt = it)

(2.1)

Whenever states’ probabilities are independent from time, the Markov chain

is said to be stationary, formally:

P (Xt+1 = j|Xt = i) = pij ∀t (2.2)

More generally, a Markov chain of order m (or a Markov chain with memory

m) is a discrete stochastic process in which future states depends only on

the current state and on the last m − 1 past states. Formally:

P (Xt+1 = it+1|Xt = it,Xt−1 = it−1, . . . ,X0 = i0) = (2.3)

P (Xt+1 = it+1|Xt = it,Xt−1 = it−1, . . . ,Xt−m+1 = it−m+1) (2.4)

As before, in a stationary m-order Markov chain:

P (Xt+1 = j|Xt = i0,Xt−1 = i1, . . . ,Xt−m+1 = im+1) = pj,i0,...,im+1
∀t

(2.5)

In statistical language modeling for text prediction, Markov chains are usu-

ally applied to sequences of words and take the name of N-grams. An N-gram

model is indeed a stationary Markov chain of order N − 1 in which Xt+1 is

the next word to be predicted, and Xt,Xt−1, . . . ,Xt−N+2 are the last N − 1

words entered.

The Markov assumption can be thus rewritten in a notation that is more

common for N-grams models:

P (wk|w1, . . . , wk−1) = P (wk|wk−N+1, . . . , wk−1) (2.6)

Meaning that the probability of word wk, given all the previous words, is

equal to the probability of wk given the last N − 1 words.

Most commonly used N-gram models are those with N equal to 2 or 3,

called respectively bigrams and trigrams. Unigrams are instead degenerate

cases in which the probability of each word is assumed to be completely

independent from the past history. With a bigram model, for example, the

probability

P (the|my, room, is, so, small, that) (2.7)

is approximated with P (the|that). With a trigram model, instead, the same

probability is approximated with P (the|small, that).
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Once the model is defined, we need a method to estimate these N-gram

probabilities. The simplest and most intuitive way to estimate probabilities

is called maximum likelihood estimation or MLE.

The idea behind maximum likelihood parameter estimation is to deter-

mine the parameters that maximize the probability (likelihood) of sample

data. An MLE estimate for the N-gram model’s parameters can be thus ob-

tained normalizing counts from a training corpus1. For example it is possible

to estimate the bigram probability of the word wk, given the previous word

wk−1, counting the occurrences of the bigrams C(wk, wk−1) and normalizing

by the sum of all bigrams that share the first word wk:

P (wk|wk−1) =
C(wk, wk−1)
∑

w C(wk, w)
(2.8)

. Since all bigram counts starting with the word wk must be equal to the

unigram count for that word wk, the above formula simplifies in:

P (wk|wk−1) =
C(wk, wk−1)

C(wk)
(2.9)

For the general case of an N-gram model, the formula for MLE parameter

estimation is:

P (wk|wk−N+1, . . . , wk−1) =
C(wk−N+1, . . . , wk−1, wk)

C(wk−N+1, . . . , wk−1)
(2.10)

N-gram models have been largely used for word prediction because they

are effective and simple to use. Moreover the frequency statistics used to

train the ML estimators are easily available on the Internet or can be com-

puted directly from texts without much effort. However these models suffer

also of some limitations.

A first problem with N-gram models is that they are completely blind

outside the limited text window they consider. If the significative informa-

tion for prediction is just one step behind the model order, N-grams can’t see

that information, resulting in poor predictions. A model with an N tend-

ing to infinite would be in theory a very good model, but this is actually

impractical because of the zero-frequency problem that is described later.

Moreover N-gram models behave in a completely different way if the

words’ ordering changes. This could be either a benefit or a drawback de-

pending on the language considered. Some languages have restrictive word

orders, often relying on the order of constituents to convey important gram-

matical information. For such languages this particular property of N-grams

1A corpus is a collection of written texts or transcribed speech selected to be statistically

representative for language modeling
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is thus a significant benefit. In contrast, with other languages in which word

ordering is more flexible, the same property may lead to negative effects on

the prediction accuracy.

Finally, one of the most critical issues with N-gram models in the so-

called zero-frequency problem. The problem arises because N-grams’ proba-

bility matrices are very sparse and their sparsity rapidly grows as the model

order increases. In fact MLE assigns zero probability to any sequence of

words that is not observed in the corpus. Being any corpus limited, some

perfectly acceptable word sequences are likely to be missing from it. This

missing data means that the N-gram matrix of any corpus may have a large

amount of zeros that should be actually filled with some non-zero probability

values.

In order to overcome this problem many smootihg techniques have been

proposed. The goal of all these methods is to perform some modifications in

the probability matrices in order to overcome the sparsity issue and improve

the overall accuracy of the language model.

2.3.2 Smoothing techniques for N-gram models

The term smoothing refer to such modifications in the MLE estimates of N-

gram probabilities that are addressed to move some probability mass from

higher counts to zero-counts, making the overall distribution less jagged (see

Figure 2.5).

Laplace smoothing

The simplest way to do smoothing is to take the matrix of N-gram counts,

before normalization, and add one to all the counts. This algorithm is called

Laplace smoothing or add-one smoothing [41]. Tha basic idea of this method

is to add one to each count, and then apply a normalization factor to account

for the extra V observations introduced:

c∗i = (ci + 1)
N

N + V
(2.11)

Where ci is the original count, N is the original normalization factor and V

is the number of unique words in the vocabulary. Applying this smoothing

factor to N-gram counts, the formula for N-gram probability estimation in

Equation 2.10 modifies as follows:

Plap(wk|wk−N+1, . . . , wk−1) =
C(wk−N+1, . . . , wk−1, wk) + 1

C(wk−N+1, . . . , wk−1) + V
(2.12)
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Figure 2.5: Smoothing

Laplace smoothing is very simple, but performs rather poorly. The prob-

lem is that too much probability mass is shifted towards unseen N-grams, so

that probability of frequent N-grams is often underestimated, while prob-

ability of rare or unseen N-grams is overestimated. Even adding a factor

smaller than one (δ smoothing) the problem is not solved in principle [22].

To overcome this issue a number of alternative smoothing techniques have

been presented.

Good-Turing smoothing

The intuition of many smoothing algorithms (i.e., Good Turing [23], Witten-

Bell discounting [65], Kneser-Ney smoothing [38]) is to re-estimate the counts

of N-grams occurring c times with the counts of N-grams occurring c + 1

times in the training corpus.

The Good-Turing estimate, that is central for many other smoothing

techniques, states that for any N-gram that occurs c times, should be pre-

tended that it occurs c∗ times where:

c∗ = (c + 1)
nc+1

nc
(2.13)

being nc is the number of N-grams that occur exactly c times in the training

data. Thus the Good Turing smoothed N-gram probability can be estimated



2.3. Statistical language modeling for text prediction 21

as:

Pgt(wk|wk−N+1, . . . , wk−1) =
C∗(wk−N+1, . . . , wk−1, wk)

C(wk−N+1, . . . , wk−1)
(2.14)

where C∗(wk−N+1, . . . , wk−1, wk) is estimated as in 2.13. Good-Turing es-

timation assumes that the distribution of each N-gram is binomial, and

assumes known the number n0 of the unseen N-grams. This number can be

indeed easily computed as V N − M , where V is the size of the vocabulary

and M is the total number of N-grams found in data.

In practice, the Good-Turing estimate is not used by itself for N-gram

smoothing, because it does not include the combination of higher-order

models with lower-order models that is necessary for obtaining good per-

formances.

Interpolation

The smoothing methods discussed so far can be useful for solving the prob-

lem of zero frequency N-grams, but there is an additional source of informa-

tion that remained unused. In fact, if there are no counts to compute the

trigram probability

P (wk|wk−2, wk−1), it is still possible to perform this estimation using the bi-

gram probability P (wk|wk−1). Similarly, if there are no counts to compute

P (wk|wk−1), the unigram probability P (wk) could be considered.

There are basically two ways to rely on this N-gram “hierarchy”, backoff

and interpolation. In backoff, when N-gram counts are not available a lower

order N-gram is employed. If there are non-zero counts, instead, the model

with the highest order is considered. By contrast, in interpolation, proba-

bility estimates from all the N-gram estimators (with descending orders) are

mixed.

In linear interpolation, N-gram models with different orders are simply

interpolated in a linear way:

Pint(wk|wk−N+1, . . . , wk−1) = λ0P (wk) +

N−1
∑

j=1

λjP (wk|wk−j, . . . , wk−1)

(2.15)

with all weights summing up to one:
∑N−1

j=0 λj = 1.

In order to compute the weights λj an held-out corpus2 may be used. The

basic idea is again to choose the values of λj which maximize the likelihood of

2An held-out corpus is an additional training corpus that is not used to set the N-gram

counts, but reserved to estimate model parameters
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the held-out corpus. That is, fixed the N-gram probabilities, we search for

the weighting values that, plugged into 2.15, give the highest probability

of the held-out set. There are various ways to find this optimal set of

wights. For example, one way is to use the Expectation Maximization (EM)

algorithm3.

Backoff

While interpolation is simple both to understand and to implement, there

are a number of other smoothing algorithms that have been proved to per-

form better [12]. One of these is backoff N-gram modeling, and in particular

the Katz backoff algorithm [35]. In a Katz backoff model the probability

of an N-gram with zero counts is approximated with the probability of an

N −1-gram. This backoff procedure is performed recursively till either non-

zero counts are available or the order N = 1 is reached:

Pkats(wk|wk−N+1, . . . , wk−1) =

{

P ∗(wk|wk−N+1, . . . , wk−1) if C(wk−N+1, . . . , wk−1) > 0

α(wk−N+1, . . . , wk−1)Pkats(wk|wk−N+2, . . . , wk−1) otherwise

(2.16)

Where P ∗ is a smoothed probability, computed for example using the Good-

Turing estimate (2.14). The α coefficients are there to ensure that the final

probability value is a true probability, namely ensuring that, fixed the right

part of the conditional probability:

∑

w

Pkats(w|w1, . . . , wN−1) = 1 (2.17)

P ∗ is thus used to discount the MLE probabilities to save some probability

mass for the lower order N-grams, while α is used to ensure that the proba-

bility mass from all the lower order N-grams sums up to exactly the amount

saved by discounting the higher-order.

Since the discounted probability P ∗ for an N-gram is estimated as:

P ∗(wk|wk−N+1, . . . , wk−1) =
C∗(wk−N+1, . . . , wk−1, wk)

C(wk−N+1, . . . , wk−1)
(2.18)

3EM is an iterative method alternating an expectation step (E), which computes an

expectation of the likelihood with respect to the current estimate of the parameters,

and a maximization step (M), which computes the parameters maximizing the expected

likelihood found on the E step
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the total amount of probability mass β that is saved for the model of order

N − 1 is:

β(wk−N+1, . . . , wk−1) = 1−
∑

wk:C(wk−N+1,...,wk−1,wk)>0

C∗(wk−N+1, . . . , wk−1, wk)

C(wk−N+1, . . . , wk−1)

(2.19)

Each individual N − 1-gram will receive just a fraction of this probability

mass, thus β needs to be normalized by the total probability of all N − 1-

grams for which an N-gram was not found. Therefore the final equation for

computing the α coefficient is:

α(wk−N+1, . . . , wk−1) =
β(wk−N+1, . . . , wk−1)

∑

wk:C(wk−N+1,...,wk−1,wk)=0 P (wk|wk−N+1, . . . , wk−1)

(2.20)

In this work the Katz backoff model has been used in order to provide

predictions to the spelling application. Section 6.2 explains how this method

has been applied to our specific problem and describes the language corpus

employed in training the statistical model.
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Chapter 3

Brain Computer Interfacing

“The human brain, then, is the most complicated organization of matter that

we know”

Isaac Asimov

This chapter summarizes the state of the art in the field of brain-computer

interfacing, with particular emphasis on motor imagery which is the BCI

paradigm adopted in this work. Section 3.1 describes a generalized BCI

system, presenting the main components involved along with their depen-

dences and interconnections. Section 3.2 deals with the main techniques

available to acquire brain signals, while Section 3.3 deals with the neuro-

physiological phenomena normally employed in BCI control. The following

sections are about EEG signal processing (Section 3.4), feature extraction

(Section 3.5) and translation (Section 3.6). Finally we discuss the role of

feedback (Section 3.7) and we present the main control paradigms adopted

in brain-computer interaction (Section 3.8).

3.1 Generalized BCI system

A Brain-Computer Interface (BCI), also called Brain-Machine Interface (BMI),

is a communication system that allows to control an external device using

signals measured from the brain. Brain-computer interfaces bypass any mus-

cle or nerve mediation and establish a direct communication pathway from

the human brain to the outer world.

A BCI system consists on three main components (see Figure 3.1):

Signal acquisition In the first stage a signal related to neuronal activity

is recorded from the brian of the subject. This signal may be acquired
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Figure 3.1: Generalized BCI system

with several techniques having different spatial and temporal resolu-

tions, different levels of invasiveness and different characteristics of the

recording equipments.

Processing and translation Signal processing and translation is the most

important component of any BCI system. Its goal is to convert signals

recorded from the brain into a control signal suitable for an external

device. In the processing part the signal is filtered and relevant fea-

tures are extracted in order to discriminate relevant brain activities.

In the translation part these features are used to generate a continuous

or discrete control signal.

Feedback and/or stimulation Depending on the approach adopted a BCI

system may also have a feedback and/or a stimulation module. When

self-induced modulations of brain activity are involved, feedback is of-

ten provided to support the user in his task, obtaining in this way a

closed loop BCI control. When the considered neurophysiological phe-

nomena are instead event-related, a stimulation module is required. In

some BCI systems it is even possible to have both feedback and stim-

ulation modules.

3.2 Signal acquisition

There are several ways to acquire signals from the brain, all falling into two

main categories: invasive and non-invasive techniques. Invasive BCIs use

activity recorded by brain implanted micro-electrodes, whereas non-invasive
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Method Measured Invasive Spatial Temporal Equipment

quantity resolution resolution portable

EEG Electric pot. No - ++ Yes

ECoG Electric pot. Yes + ++ Yes

µ-electrodes Electric pot. Yes ++ ++ Yes

MEG Magnetic fields No + ++ No

fMRI BOLD No ++ - No

NIRS BOLD No + + Yes

Table 3.1: Comparison of techniques for measuring brain activity

BCIs use brain signals recorded from outside the body boundaries. Invasive

recording methods either measure the neural activity of the brain on the

cortical surface (electrocorticography, ECoG) or from within the cortex.

While having strong advantages in terms of signal quality, these methods

require very delicate and risky surgeries with all the problems related to

stability of implants and protection from infections.

Dealing with non-invasive techniques, two main approaches exist: mea-

suring dependent blood oxygenation levels (BOLD) and measuring electri-

cal activity generated by neurons. Methods adopting the first approach

are based on the observation that local concentration of deoxygenation

hemoglobin in brain tissue is correlated to neural activity. These concen-

tration levels can be measured with functional magnetic resonance imag-

ing (fMRI) or with near-infrared spectroscopy (NIRS). Magnetic resonance

measures changes in the magnetic field due to different oxygenation levels

in brain tissues. It provides signals with high 3D spatial resolutions but it

is limited by low temporal resolutions and very high costs for the recording

equipment. Near-infrared spectroscopy, instead, performs BOLD estima-

tions measuring the reflection of infrared light by the brain cortex through

the skull. NIRS provides a spatial resolution comparable with fMRI (but

limited to the cortex’s surface) combined with high temporal resolutions and

a recording device that is portable and relatively cheap. This is a recent

technique and it has been proved to be suitable for real-time BCI control

[56].

Non-invasive methods based on electrical brain activity are mainly two:

magnetoencephalography (MEG) and electroencephalography (EEG). MEG

is sensitive to the magnetic fields induced by the electric currents in the

brain. It provides a precise spatial resolution (about 5 millimeters) and

a good temporal resolution, but the recording equipment is bulky and ex-

pensive. To date, this method is used only in laboratory settings and is
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Figure 2.3: A neuron and its parts
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Figure 3.2: Transmission of nervous signals

consequently not suitable for a BCI control in the patient’s home environ-

ment. Electroencephalography, instead, makes use of electrodes on the scalp

to sense the electrical fields generated by the firing neurons. EEG recordings

provide a very good temporal resolution (in the order of milliseconds) but

suffer of a poor spatial resolution (in the order of centimeters). These limits

in signal localization are mainly due to the diffusive effects caused by all

intermediate tissues between the scalp and the brain cortex. However EEG

is still the preferred choice for non-invasive BCI communication, because of

its fine temporal resolution, ease of use, portability and low set-up cost.

Electroencephalography is the acquisition technique adopted in this work.

The remaining part of this section gives further details about the nature of

the EEG signal and describes the standard recording settings employed.

3.2.1 Nature of the EEG signal

The EEG signal is a measurement of currents that flow during synaptic exci-

tations of the dendrites of pyramidal neurons in the cerebral cortex. Within

neurons signals are transmitted by means of action potentials, which are

discrete electrical signals that propagate down axons and cause the release

of chemical neurotransmitters at the synapse, i.e. the contact area between

two neurons (see Figure 3.2). When these neurotransmitters comes in con-

tact with the neuron on the other side of the synapse (the post-synaptic

neuron), they typically cause electrical currents within its dendrites. The

activity measured by EEG are electrical potentials induced by the post-

synaptic currents, rather than by action potentials. Therefore, the scalp
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electrical potentials producing the EEG are due to the extracellular ionic

currents.

The human head consists of different layers including the scalp, the skull,

the brain, and many other layers in between. The skull attenuates the

signals approximately one hundred times more than the soft tissue. On the

other hand, most of the noise is generated either within the brain (internal

noise) or over the scalp (external noise). Therefore, only large populations

of active neurons can generate enough potential to be recordable using scalp

electrodes. For this reason the spatial resolution of the EEG signal is rather

poor compared to invasive recordings.

3.2.2 The 10-20 international system

The 10-20 international system is the standard naming and positioning

scheme for EEG recordings. It is based on an iterative subdivision of arcs

on the scalp starting from four craniometric reference points: nasion (Ns),

inion (In) and left (PAL) and right (PAR) pre-auricular points. The nasion

is the point between the forehead and the nose, while the inion is the lowest

point of the skull from the back of the head and is normally indicated by a

prominent bump. Left and right pre-auricular points are instead the bony

indentations behind left and right hears. The intersection of the longitudinal

nasion-inion (Ns-In) with the arch connecting the two pre-auricular points

(PAL-PAR) is named the vertex (see Figure 3.3).

In the 10-20 international system 19 electrodes are placed at fixed dis-

tances from these landmark points and the name “10-20” refer to the fact

that the actual distances between adjacent electrodes are either 10% or 20%

of the total Ns-In or PAL-PAR distances.

Each electrode has a letter to identify the lobe and a number to identify

the hemisphere location. The letters F, T, C, P and O stand for Frontal,

Temporal, Central, Parietal and Occipital respectively. A “z” (zero) refers to

an electrode placed on the midline. Even numbers (2,4,6,8) refer to electrode

positions on the right hemisphere, whereas odd numbers (1,3,5,7) refer to

those on the left hemisphere. For example, electrodes C3 and C4 are placed

on the central part of the cortex (C) respectively on the left (3) and right (4)

hemispheres. These two electrodes are particularly important in the scope

of this thesis since they are positioned over the primary motor cortex, which

plays a fundamental role in the BCI paradigm adopted.
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Figure 3.3: The 10-20 international system

3.3 Neurophysiological phenomena for EEG-based

BCI

Different neurophysiological phenomena may be exploited to extract infor-

mation from scalp-recorded EEG signals. In some cases such phenomena

are generated consciously by the user (endogenus system), in other cases

there is an unconscious mechanism in response to an external stimulation

(exogenous system). Exogenous BCIs are based on Event Related Poten-

tials (ERP), while the main endogenous BCIs are based on Slow Corti-

cal Potentials (SCP) and Sensory-Motor Rhythms (SMR). In the following

paragraphs these three classes of neurophysiological phenomena are briefly

exposed. Particular attention is placed on sensory-motor rhythms, being

these most relevant in the scope of this thesis.

3.3.1 Event Related Potentials

Event-related potentials (ERPs) are electrocortical potentials that can be

measured in the EEG before, during, or after a certain event. They have

a fixed time delay to the stimulus and their amplitude is usually much

smaller than the ongoing spontaneous EEG activity. ERPs can be detected

by averaging many recordings time-locked to the event. This averaging

cancels out the background activity, which is not synchronized with the

stimulus, and leaves only the ERP. There are different kinds of ERPs, the

most commonly used being P300 and Steady State Visual Evoked Potentials

(SSVEP).
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P300

P300 is a positive deflection in the EEG, appearing approximately 300 ms

after the presentation of rare or surprising task-relevant stimuli. To evoke

a P300, subjects are asked to observe a random sequence of stimuli. One

stimulus type (the oddball stimulus) appears only rarely in the sequence,

while the other stimuli (the normal stimuli) appear more often. Whenever

the target stimulus appears, a P300 can be observed in the EEG. Subjects

must be attentive to stimuli for a P300 to be elicited, and the more the

attention, the bigger the P300. The first BCI based on P300 was proposed

in 1988 by Farwell and Donchin [21]. It was a speller in which a matrix

containing symbols from the alphabet was displayed on a screen. Rows

and columns of the matrix flashed in random order, and flashes of the row

or column containing the desired symbol constituted the oddball stimulus,

while all other flashes constituted normal stimuli.

SSVEP

SSVEPs are oscillations observable at occipital electrodes, induced by repet-

itive visual stimulation. Stimulation at a certain frequency leads to oscil-

lations at the same frequency and at harmonics and subharmonics of the

stimulation frequency [29]. Users can select one stimulus by focusing on it,

which leads to an increased amplitude in the frequency bands correspond-

ing to the flickering frequency of the stimulus. The main problem with this

approach is that requires intact gaze, which makes it unsuitable for patients

with restricted eye movement control.

3.3.2 Slow Cortical Potentials

Slow cortical potentials (SCPs) are slow voltage shifts in the EEG occur-

ring in the frequency range 1-2 Hz. Negative SCPs correspond to a general

decrease in cortical excitability. Positive SCPs correspond to a general in-

crease in cortical excitability. It has been proved [3] that subjects can learn

to voluntarily control their SCPs when they are provided with visual or audi-

tory feedback of their brain potential. The voluntary production of negative

and positive SCPs has been exploited in one of the earliest BCI systems for

disabled subjects, the “Thought Translation Device” [5] developed by the

group of Birbaumer at Tübidgen University (Germany).
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Figure 3.4: Sensory-motor areas. On the left side, the motor cortex is displayed along

with the “motor homunculus” which shows the brain regions controlling the respec-

tive limb and facial muscles. Similarly, on the right side, sensory areas are illustrated

by a “sensory homunculus” indicating which regions are allocated to process sensory

information from the respective parts of the body.

3.3.3 Sensory-Motor Rythms and Motor Imagery

Oscillatory brain activity occurs in many regions of the brain and changes

according to the state of subjects, for example between wake and sleep or

between concentrated work and idling. This activity in the EEG is classified

into different frequency bands or rhythms. Typical rhythms are inside the

delta (1-4 Hz), theta (4-8 Hz), mu (8-13 Hz), beta (13-25 Hz), and gamma

(25-40 Hz) frequency bands.

Sensory-Motor Rhythms (SMR) are oscillatory activities observable in

correspondence of specific sensory-motor areas of the cortex, concentrated

in the frequency bands mu and beta. As illustrated in Figure 3.4, different

parts of the human body are mapped into specific regions of the sensory-

motor cortex. Moreover organs or limbs requiring a very fine motor control

or detailed sensory information, such as hands or tongue, are mapped into

larger regions on the sensory-motor cortex.

It has been proved that, after a training period, people can learn to

voluntary modulate sensory-motor rhythms, particularly the ones from the

hands and feet areas of the motor-cortex.

Indeed movement, or preparation for movement, is accompanied by a

decrease of SMR activity, contralaterally to the movement. This decrease

has been labeled “event-related desynchronization” or ERD [49]. While its

opposite, that is rhythm increase, or “event-related synchronization” (ERS)

occurs in the post-movement period and with relaxation. Furthermore, and

most relevant for BCI applications, ERD and ERS do not require actual
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Figure 3.5: EEG spectra on channels C3 and C4 during left-hand and right-hand motor

imagery

movement but occur even when just the imagination of movement is per-

formed (motor imagery).

Figure 3.5 shows EEG spectra computed on channels C3 (left hemi-

sphere) and C4 (right hemisphere) during left-hand and right-hand motor

imagery. Left-hand motor imagery is characterized by a clear peak in the

mu band on channel C3 and a power attenuation on channel C4 at the same

frequencies, while exactly the opposite happens with right-hand motor im-

agery. Figure 3.6 shows the scalp locations where the EEG power in the

mu band discriminates most between the motor imagery of one hand and

the resting condition. The level of discrimination is estimated with the r2

coefficient which is computed as reported in Section 7.1.3. These topogra-

phies clearly show that the discriminative information is on the electrodes

over the motor cortex contralaterally to the part of the body interested by

motor imagery.

BCI systems employing imagined movements of hands, feet, or tongue

have been developed by different research groups around the world, the most

important ones being the Wolpaw’s group at the Wadsworth Center (Albany,

NY) and the group around Gert Pfurtscheller in Graz (Austria).

Research in this field started in the early 1990s when Wolpaw and his

colleagues developed the first motor-imagery BCI for an EEG-based cursor

control [68]. In 2004 the same group proposed an improved version of their

original system in which two-dimensional control of a cursor movement was

achieved after a relatively short training period [67].

The group led by Gert Pfurtscheller at Technische Universität Graz de-

veloped a system to discriminate between three imagined movements (left
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(a) Left hand VS rest (b) Right hand VS rest

Figure 3.6: r2 topography maps for different motor-imagery tasks in the mu frequency

band

hand, right hand, and feet) using spectral features for classification. The

same group developed also the “Virtual Keyboard” [45], a spelling applica-

tion in which binary selections are performed through the movements of a

cursor controlled by motor imagery.

Finally the Berlin BCI group developed various BCIs based on motor

imagery, having the main goal of reducing the training effort normally re-

quired to the users [6]. Their BCI has been used also to control an original

spelling application “Hex-o-Spell” [7]. In this application letters are dis-

played in hexagons and selections are performed rotating and scaling an

arrow by means of two different motor-imagery tasks.

3.4 EEG signal processing

Once it has been acquired from the scalp, the EEG signal is amplified,

sampled and digitalized. Then, before proceeding with feature extraction

and translation, this digital signal is normally pre-processed in order to

eliminate artifacts and to enhance the spatial resolution.

3.4.1 Handling artifacts

Artifacts are undesirable potentials that contaminate brian signals and that

may compromise the identification of the neurophysiological phenomena ex-

ploited by the BCI. Artifacts may originate both from non-physiological and

physiological sources.

Artifacts of the first type originate from outside the human body and

may occur due to noise introduced by the recording equipment (e.g. the 50
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(a) EEG free of artifacts

(b) EEG affected by 50Hz power-line artifacts

(c) EEG affected by ocular artifacts

(d) EEG affected by muscular artifacts

Figure 3.7: Artifacts affecting the EEG signal
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Hz power-line noise) or due to changes in electrode impedances (see Figure

3.7(b)).

Physiological artifacts, instead, may be caused by a number of activities

inside the human body. The two main artifacts of this type affecting the

EEG signal are ocular (EOG) and muscular (EMG) artifacts. EOG artifacts

are caused by blinking of eyes or pupil movements, while EMG activity

is generated with the movement of any part of the body, including facial

muscles, jaw and tongue. EOG is most prominent over the anterior head

regions and is normally characterized by high-amplitude patterns at low

frequencies, normally around 4-5 Hz (see Figure 3.7(c)). EMG has instead

a wide frequency range and is mostly visible at high frequencies (see Figure

3.7(d)).

There are two main approaches in handling artifacts: artifact avoidance

and artifact removal. In the first case corrupted EEG segments are simply

identified and rejected. The easiest way of doing this is to record EOG

or EMG activity directly (with appropriate sensors) and discard the EEG

signal in the time window in which artifacts occurred. Artifact avoidance

is mainly applied for offline analyses, but is not suitable for online BCIs.

Artifact removal, instead, involves processing the EEG signal in order to

filter out artifacts, while keeping the interesting neurological phenomena

intact. Many different strategies have been applied for artifact removal,

the main ones being linear filtering, regression and blind source separation

(BSS) [34].

In this thesis no specific algorithm have been developed for handling

artifacts during online processing. However EOG activity has been recorded

with two electrodes placed around the left eye of the subject and trials

affected by ocular artifacts have been identified and excluded from offline

analyses.

3.4.2 Spatial filtering

As discussed in Section 3.2 EEG scalp potentials are known to be associated

with a large spatial scale owing to volume conduction. Indeed, it has been

shown that only half of the contribution to one scalp electrode comes from

sources within a 3 cm radius. This is a particular problem if the signal of

interest is weak (like sensory-mothor rhythms) and affected by noise. A way

of enhancing signal localization is spatial filtering.

There are a number of spatial filters available in literature [42], most of

them apply a linear transformation to the EEG signal re-estimating the con-

tribution brought by each single channel. Some spatial filters, like Common
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Average Reference (CAR) or Laplacian filters, preserve the original number

of channels and produce output signals that are still related to the sites of

the scalp where they were originally recorded.

Other filters, instead, perform transformations in which the output chan-

nels loose any direct reference with the original sources. Examples of these

are Principal Component Analysis (PCA), Independent Component Analy-

sis (ICA) and Common Spatial Patterns (CSP). This second class of filters

is typically used when the output channels are thought to be employed as

discriminative features and some of them apply supervised techniques to

compute transformations.

In our BCI system Large Laplacian filters have been employed to enhance

signal localization. Section 5.2 provides further details about Laplacian

filters and explains how they have been applied in this work.

3.5 Feature extraction

The main goal of a BCI is to discriminate the user’s intentions by means

of brain activity alone. For this purpose relevant features need to be ex-

tracted from the EEG so that neurophysiological phenomena underlying

the recorded brain activity can be identified and successively translated into

control signals.

In order to design proper feature extraction algorithms for BCIs, a priori

knowledge about the characteristics of the neurophysiological phenomena is

normally employed. Depending on the BCI paradigm adopted (i.e. ERP,

SCP or SMR) and on the translation strategy employed, these features may

be extracted in the time, frequency or spatial domain.

Time domain features Features extracted in the time domain relate how

the amplitude of the EEG signal vary time-locked to the presentation

of stimuli or time-locked to specific tasks performed by the user. Time

domain features are normally employed when the underlying neuro-

physiological phenomena are based on event-related potentials (such

as P300), since they typically occur within precise time windows after

the presentation of a stimulus. In order to separate relevant infor-

mation from background activity, band-pass filtering, windowing and

down-sampling techniques are normally adopted for this kind of fea-

tures.

Frequency domain features Frequency domain features are related to

changes in the oscillatory activity of the EEG signal. Such changes
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may be generated by an external stimulus or self-induced by the user

concentrating on a specific mental task. For example in BCI systems

based on SSVEP the band-power in the harmonics of the visual stim-

ulation frequency is used as a feature. Frequency domain features are

mostly employed with BCI systems based on motor imagery since they

are particularly suitable to identify how sensory-mothor rhythms mod-

ify according to specific tasks. Since motor imagery is the paradigm

adopted in this thesis a more detailed explanation of these features is

reported in Section 3.5.1.

Spatial domain features The main goal of spatial domain features is to

combine information coming from different EEG channels in order to

identify patterns in brain activity related to different neurophysiologi-

cal phenomena. As anticipated in Section 3.4.2 several spatial filtering

techniques have been employed for this purpose, the most common

being PCA, ICA and CSP. Like frequency features, spatial features

have been widely adopted for motor imagery. Indeed neuronal ac-

tivity over the motor cortex is recorded from multiple electrodes and

spatial variations of EEG potentials have been proven to be source of

discriminative information.

3.5.1 Features for motor imagery

A number of techniques have been employed in order to extract EEG features

discriminating different motor-imagery tasks. As discussed before, most of

them are defined in the frequency domain and in the spatial domain.

Dealing with frequency domain features we can further distinguish be-

tween features based on spectral power and features based on phase syn-

chrony. Features based on spectral power have been the firsts to be used for

motor imagery. In [67] Wolpaw and its colleagues translated the spectral

powers in the mu and beta frequency bands into continuous movements of

a cursor on a screen. In a successive work [20] the same group proposed

to estimate spectral powers in a wider range of frequencies, for different

channels and in different time windows computing feature vectors as linear

combinations of these values.

When discrete trial classification is involved ERD/ERS patterns have

been used as features too. The ERD/ERS is defined as the percentage of

power decrease (ERD) or power increase (ERS) in relation to a one-second

reference interval before the verification of an event. In this case the event

considered is the start of the trial in which the subject is instructed to

perform a precise motor-imagery task.
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Features based on phase synchrony have been investigated first by the

group of Pfurtscheller in Graz [57] and are based on the computation of

the phase-locking value (PLV) . The PLV measures the degree of synchrony

between couples of channels at different time windows. PLV revealed to be

discriminative for motor imagery, but the accuracies obtained with these

features alone were inferior compared to band-power features. However

combining phase and amplitude information improved accuracies may be

obtained.

Features computed in the spatial domain proved to be particularly suit-

able for motor imagery too. The most successful method employed is Com-

mon Spatial Patterns (CSP) [50]. The CSP technique allows to determine

spatial filters that maximize the variance of signals of one class and at the

same time minimize the variance of signals of another class. The variances

of the signals filtered with CSP are directly used as features for classifica-

tion. Extensions of the CSP to multi-class problems have been developed

too [27].

For the BCI system developed in this thesis new features have been

designed to discriminate different motor-imagery tasks. These features are

based on band-powers and are computed in the frequency domain. For

further details refer to Section 5.4.

3.6 Translation

In order to translate brain activity into control signals two main approaches

could be used: regression and classification. With regression specific fea-

tures of the EEG signal are evaluated in real-time and used to generate a

continuous control signal. This approach is normally applied to BCI sys-

tems based on slow cortical potentials and motor imagery. Indeed regression

requires a self-modulation of some neurophysiological activity and does not

depend on external stimuli. Normally the output signal is produced com-

bining different features and is normalized within a predefined range. We

already mentioned the works of Wolpaw and McFarland in which sensory-

motor rhythms were translated into 1D and 2D cursor movements using

regression techniques [68] [27].

Regression has the main advantages that the number of choices proposed

to the user is not fixed and the BCI control paradigm can be completely

asynchronous (see Section 3.8). The drawbacks are related to the precision

of the control signal and to the robustness to the non-stationarities occurring

in the EEG.
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Classification is instead a more popular approach in BCI research. Clas-

sification algorithms are used to identify patterns of brain activity adopting

techniques commonly used for pattern recognition and machine learning.

A large number of classification algorithms have been employed in BCI

systems. These can be broadly categorized in memory-based methods, dis-

criminant functions and dynamical models. An example of a memory-based

method is K-Nearest Neighbors (KNN) in which a new sample is simply

classified based on the labels of the closest K samples in the training data.

Discriminant functions are instead further categorized in linear, quadratic

and non-linear models. Linear models include Linear Discriminant Anal-

ysis (LDA) and Support Vector Machines (SVM) and assume classes to

be linearly separable. Quadratic class boundaries are instead employed by

Quadratic Discriminant Analysis (QDA), while non-linear boundaries char-

acterize Artificial Neural Networks (ANN) and Kernel Methods (KMs). Fi-

nally, dynamical models assume that the system being considered evolve in

time and that its behavior can be modeled through a set of states. Examples

of these are Hidden Markov Models (HMM) and Kalman Filters.

Linear methods are the most popular in the field of BCI research. This

is mainly due to their low complexity and their good generalization capa-

bilities. In some works [46] [58] dynamical models have been applied with

success too, while quadratic and non-linear methods are less common in

the BCI field. In the BCI system developed for this thesis translation is

performed through classification by means of Linear Discriminant Analy-

sis (LDA). Section 5.7 describes in details the model applied and provides

motivations for adopting this classifier.

3.7 Feedback and adaptation

In any BCI system adaptation is a crucial concept that needs to be consid-

ered. Two different kinds of adaptation exist: the adaptation of the user

to the machine and the adaptation of the machine to the user. In the first

case the subject learns to regulate specific brain activities by means of a

feedback signal that is provided online by the BCI system. The feedback

gives continuous information about the alteration of brain activities thus

enabling a conscious or unconscious training process on the subject side.

A somewhat opposite approach is the machine learning approach to

BCI, where the training is relocated form the subject to the learning al-

gorithm. Algorithms for feature extraction and translation, indeed, must

be parametrized for specific subjects and may implement also adaptation

schemes to handle inter-session or even inter-trial variability.
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Figure 3.8: Schematic display of the two adaptive systems involved in brain-computer

interactions

These two approaches reflect opposite positions (see Figure 3.9). How-

ever, common BCI systems neither rely solely on feedback learning nor only

on machine learning. Thus a coadaptation of the user and the algorithm oc-

curs inevitably, but remains unclear how to bring these interacting learning

systems to work optimally. It may happen indeed that wrong feedback sig-

nals could frustrate or irritate the subject who may start changing his mental

strategy, while it was correct instead. On the other side machine learning al-

gorithms may try to continuously adapt themselves trying to cope with brain

activities completely unrelated to the expected neurophysiological phenom-

ena. How to handle correctly this complex co-adaptation problem is still an

open issue in the field of BCI research.

3.8 Control paradigms

BCI control paradigms define how users can interact with BCI systems.

There are basically three different ways to perform this interaction (see

Figure 3.9):

Asynchronous control When asynchronous control is provided the user

drives the interaction with the BCI system which is continuously avail-

able. Therefore periods of intentional control alternate with periods

of no control (idle state) with timings imposed by the subject (self-

paced). During the idle state the system is expected to remain neutral

or unchanged waiting for the user to trigger the start of a new inten-
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tional control. BCI system adopting asynchronous control typically

employ regression to perform signal translation and generate continu-

ous control signals.

Synchronized control In contrast to asynchronous control there are BCI

systems working only in synchronized control environments. After a

synchronized system is turned on the user is regularly prompted for

input and he is able to control the device only during specific time

windows explicitly defined by the system. This is a system-driven

interaction and it is normally employed in BCI systems involving clas-

sification algorithms. Synchronized control is probably the most com-

mon paradigm employed, being also the easiest method to implement.

However synchronized control can cause significant frustration and fa-

tigue, since it requires continuous attention to the user and strict time

windows may not fit well with other activities possibly performed dur-

ing BCI control.

System-paced control System-paced control is similar to synchronized

control but supports also periods of no intentional control while the

system is available. In a synchronized control system, if the user does

not pay attention to the BCI during the period of expected control this

would result in an unattended action (probably caused by a random

classification). In a system-paced system, instead, the user can decide

when to start and stop intentional control within the time windows in

which the system is available. System-paced control can be regarded

also as an asynchronous control in which the system becomes com-

pletely unavailable in specific time windows. This approach is clearly

better compared to synchronized control but requires the BCI system

to identify the transitions from intentional control to the idle state and

vice versa.

In this thesis a synchronized control paradigm has been adopted, since a

classification algorithm is involved and the idle state is not detected. Fur-

ther details about the specific application protocol adopted are reported in

Section 4.2.
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Chapter 4

System model

“Science may be described as the art of systematic over-simplification.”

Karl Popper

This chapter presents the overall model of the BCI spelling application

developed for this thesis. In Section 4.1 we describe the main modules

composing the system along with their interactions and dependencies, while

Section 4.2 deals with the application protocol chosen.

4.1 Overview

The BCI spelling application developed for this thesis is a system composed

of three main modules (see Figure 4.1):

BCI module The BCI module processes the raw EEG signal acquired from

the amplifier and classifies different motor-imagery tasks. This opera-

tion is performed within a processing pipeline composed of five stages:

spatial filtering, spectral estimation, feature computation, feature ex-

traction and classification. Along with the classification results this

module provides also a feedback signal to be displayed to the user.

The BCI module receives from the spelling interface the exact timing

instants in which the EEG signal should be buffered and classified.

Finally, if more than one classifier is involved, the spelling application

informs the BCI module about which is the correct classifier to employ.

Spelling interface The spelling interface presents choices to the user and

translates the control signal received in targets’ selections. A target

may contain a set of letters to be expanded, a word suggestion, or
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Figure 4.1: System overview

an auxiliary function to be activated. The output of this module is

thus text in natural language. Moreover the graphical user interface

provided by this module displays the BCI feedback to the user and

keeps him informed about the current state of the spelling application.

The spelling interface receives information about symbols’ and words’

probabilities from the prediction module and ensures that this module

is always synchronized with the current composition context.

Prediction module The prediction module computes word suggestions

and symbols’ probabilities querying a statistical language model. The

prediction context is kept updated with messages received from the

spelling interface.

4.2 Application protocol and timings

Since the performances obtained with the BCI have been found to vary

significantly with different subjects, three different versions of the spelling

application have been proposed:

1. an application controlled by a 4-class control signal with four targets

in the speller interface;

2. an application controlled by a 3-class control signal with three targets

in the speller interface;
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3. an application controlled by a 3-class control signal with four targets

in the speller interface;

In the first two versions the number of classes is equal to the number of

targets and therefore each target is mapped to a specific class. In the third

version, instead, there are fewer classes than targets, thus the selection of

a target needs to be performed in multiple steps. In this case a two-step

selection strategy has been adopted:

First step In the first step a binary classification is performed: the first

class is mapped on three targets, while the second class is mapped on

the fourth target.

Second step If in the first step the class with three targets has been chosen

a second selection step is required. In this case a ternary classification

is performed to decide which of the three targets needs to be selected.

Section 6.1.5 provides motivations for this selection strategy and explains

how the user interface model fits with it.

When single-step selection is employed the application protocol consists

on three phases (see Figure 4.2):

Preparation At the beginning of the preparation phase the graphical user

interface is displayed on the screen and a text message warns the user

that the acquisition session is going to start in few seconds (see Figure

4.3(a)). This phase lasts 3 seconds.

Thinking In the thinking phase the user can see all the options provided by

the current interface state and decide which target to select. Near to

each target a small icon indicating the corresponding motor-imagery

task is drawn (see Figure 4.3(b)). During this phase the acquired EEG

signal is completely discarded and no feedback is displayed. This phase

lasts 3 seconds.

Recording In the recording phase the EEG signal is buffered for later clas-

sification. During this phase a brain depicted at the screen’s center

is colored in green and, when feedback is enabled, two green bars are

displayed too (see Figure 4.3(c)). The height of each bar is propor-

tional to the strength of the mu rhythm computed in real-time from

the EEG signal on electrodes C3 (left bar) and C4 (right bar). This

phase lasts 6 seconds.

Selection As soon as the recording phase terminates the signal is classi-

fied and the selected class is immediately available to the application.
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Figure 4.2: Application protocol for single-step selection (top) and two-step selection

(bottom)

During this phase the selected target is colored in green (see Figure

4.3(d)). This way the user has always clear the result of classification

and is prepared for a change of the interface state. This phase lasts

500 milliseconds. After the selection phase the application returns in

the thinking phase for a new target selection.

When a two-step selection is employed, instead, the selection strategy re-

quires two recording phases and two selection phases. Moreover an inter-step

phase have been inserted between the first selection phase and the second

recording phase. A detailed timing diagram for this protocol is reported in

Figure 4.2 .
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(a) GUI displayed with single-step selection

during preparation phase

(b) GUI displayed with single-step selection

during thinking phase

(c) GUI displayed with single-step selection

during recording phase

(d) GUI displayed with single-step selection

during selection phase

Figure 4.3: GUI displayed with single-step selection in different phases
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Chapter 5

The BCI module

“If the human brain were so simple that we could understand it, we would

be so simple that we couldn’t.”

Emerson M. Pugh

This chapter presents the BCI module that translates EEG signals into

commands for the spelling application. All the algorithms involved in this

translation are described in details: spatial filtering (Section 5.2), spectral

estimation (Section 5.3), feature computation (Section 5.4), feature selection

(Section 5.5), feature extraction (Section 5.6) and classification (Section 5.7).

5.1 Overview

The goal of this module is to translate the EEG signal acquired from the

subject’s scalp into a discrete control signal that is used for controlling the

spelling application. This translation is performed in five processing stages

(see Figure 5.1):

Spatial filtering The raw EEG signal acquired from the amplifier is spa-

tially filtered. This spatial filter is used to enhance signal localization

averaging out all background activity that is not relevant for classifi-

cation.

Spectral estimation The EEG signal undergoes spectral estimation. Spec-

tral estimation is fundamental for all further processing since all fea-

tures are defined in the frequency domain.

Feature computation A number of features are computed from the EEG

spectra. These features have been designed in order to discriminate
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Figure 5.1: BCI processing pipeline

among different motor-imagery tasks and correspond to best subset of

features obtained with a feature selection algorithm.

Feature extraction The feature vector is projected in a lower-dimensional

space. The output of this stage is a feature vector having c−1 elements,

where c is the number of classes considered.

Classification This is the last stage of the pipeline, in which the projected

features are finally classified.

5.2 Spatial filtering

As discussed in Section 3.4.2 EEG scalp potentials are associated with low

spatial resolutions and spatial filters are commonly used in order to enhance

signal localization. The spatial filter employed in this processing pipeline are

Large Laplacians. This choice is motivated by the fact that both the physi-

ological meaning of the channels and the original number of channels want

to be preserved. The most commonly used spatial transformations preserv-

ing these properties are Common Average Reference (CAR) and Laplacian

filters.

CAR references all channels to their common average. The mean of all

EEG channels is thus subtracted from each individual channel:

V CAR
i = Vi −

1

N

N
∑

j=1

Vj (5.1)



5.2. Spatial filtering 53

(a) Small and Large Laplacian

references for electrode C3

(b) Small and Large Laplacian

references for electrode C4

Figure 5.2: Small and Large Laplacian references for electrodes C3 and C4. Electrodes

C3 and C4 are colored in yellow, Small Laplacian references are colored in orange and

Large Laplacian references are colored in green.

where N is the number of electrodes in the montage and Vi is the potential

between the electrode i and the reference. While the influence of far field

sources is reduced, CAR may introduce some undesired spatial smoothing,

since the artifacts of one channel may be spread in all other channels.

Laplacian filters, instead, are computed subtracting from each electrode

i the average of its surrounding electrodes:

V LAP
i = Vi −

1

|Si|

∑

j∈Si

Vj

where Si corresponds to a neighborhood of electrode i. The choice of the

neighborhood Si determines the characteristics of the spatial filter. Mostly

used are Small Laplacians and Large Laplacians. Considering a montage

with 64 electrodes, Si is the set of nearest-neighbor electrodes for Small

Laplacians, while it is the set of next-nearest-neighbor electrodes for Large

Laplacians (see Figure 5.2). Since in our experiments we used a montage

with 19 electrodes (according to the 10-20 international system) only Large

Laplacian filters could be applied.

During offline analyses both CAR and Large Laplacian filters have been

tested. Figure 5.3 show examples of EEG spectra computed with the two

spatial filters. All plots are derived from the same dataset averaging the

spectra of channels C3 and C4 over 56 trials associated to the same motor-

imagery task (left hand). Plots’ scales are obviously different since both

CAR and Large Laplacians do not preserve the absolute values of signals,

but this is not a problem since only relative measures are always considered.

As clear from these plots, spatial filters enhance signal localization removing

common underground activity. When no spatial filter is applied a strong
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(b) CAR spatial filter
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(c) Large Laplacian spatial filter

Figure 5.3: Average spectra for trials of task left-hand computed on electrodes C3

(blue) and C4 (green) applying different spatial filters.

activity is visible at low frequencies and the mu rhythm around 10 Hz on

C3 is almost completely hidden by noise (see Figure 5.3(a)). The CAR filter

removes some of this low-frequency power and reveals a clear peak around 10

Hz on channel C3. The Large Laplacian further enhances the sharpness of

this mu rhythm and all underground activity is almost completely removed

(see Figure 5.3(c)).

According to these analyses we chose to apply three Large Laplacian

filters centered respectively on channels C3, Cz and C4. These channels,

indeed, are known to be associated with the brain areas where sensory-

motor rhythms are mostly visible.

5.3 Spectral estimation

The goal of this second stage of the pipeline is to estimate the spectral

power of the EEG signal in real-time from a limited number of voltage sam-

ples. This estimation is required because sensory-motor rhythms are mostly

detectable in the frequency domain and signal classification is performed

employing band-power features. Moreover, in order to provide the user with
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a feedback in real time, the EEG spectrum needs to be re-estimated at any

single data block acquired. This module, indeed, receives a data block of 16

voltage samples acquired from 19 channels every 62.5 ms and updates the

spectral estimations as soon as a new block is processed.

Since the EEG signal is characterized by a low signal-to-noise ratio and

can be affected by abrupt time variations, computing the spectrum at any

single data-block using deterministic techniques (like Discrete Fourier Trans-

form or Short Time Discrete Fourier Transform) usually produces very poor

results that may be difficult to interpret. To overcome this problem statis-

tical spectral estimation techniques are normally employed.

In statistical signal processing, signals are considered as discrete random

processes and the goal of statistical spectral analysis is to estimate the Power

Spectral Density (PSD) of these processes. The PSD of a stochastic process

is defined as the Discrete Time Fourier Transform (DTFT) of its autocor-

relation sequence and describes how the power of the process is distributed

with frequency.

Formally, if {y(t); t = 0,±1,±2, . . . } denotes a second-order stationary

random process with autocorrelation sequence ρ(k) = E[y(t)y∗(t − k)], its

PSD φ(ω) is defined as:

φ(ω) =

+∞
∑

k=−∞

ρ(k)e−jωk (5.2)

An alternative definition of the PSD is the following:

φ(ω) = lim
N→∞

E





1

N

∣

∣

∣

∣

∣

N
∑

t=1

y(t)e−jωt

∣

∣

∣

∣

∣

2


 (5.3)

which is:

φ(ω) = lim
N→∞

E

[

1

N
|Y (ω)|2

]

being Y (N) the DTFT of y(t).

The spectral estimation problem can thus be stated as follows: from a

finite-length record {y(1), y(2), . . . , y(N)} of a second-order stationary ran-

dom process, determine an estimate φ̂(ω) of its power spectral density φ(ω),

for ω ∈ [−π,+π].

There are basically two main approaches to this estimation problem:

non-parametric methods and parametric methods. Non-parametric methods

do not make any assumption on the nature of the stochastic process, while
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parametric methods assume an underlying model and try to estimate its

parameters from data.

Two wide spread non-parametric methods are periodograms and correl-

ograms. Periodograms are based on the definition of the PSD reported in

5.3 and perform this simple estimation:

φ̂(ω) =
1

N

∣

∣

∣

∣

∣

N
∑

t=1

y(t)e−jωt

∣

∣

∣

∣

∣

2

(5.4)

where N is the number of samples available. Correlograms, instead, rely on

definition 5.2 and estimate the PSD as follows:

φ̂(ω) =

+(N−1)
∑

k=−(N−1)

ρ̂(k)e−jωk (5.5)

where ρ̂(k) is the estimate of the autocorellation ρ(k) computed with the N

samples available. There are also a number of variations and enhancements

of these methods, but, dealing with EEG spectral analysis, parametric meth-

ods have been proven to perform better in comparison to non-parametric

ones.

Parametric approaches work on the assumption that the underlying pro-

cess can be described as the output of a linear system driven by white noise.

Considering a linear system with transfer function:

H(z) =
B(z)

A(z)

the stochastic process can be modeled as:

y(t) =
B(z)

A(z)
e(t) e(t) ∼ WN(0, σ2)

where e(t) is a white noise with zero-mean and variance σ2. Given this

model the PSD is easily computed as:

φ(ω) =

∣

∣

∣

∣

B(ejω)

A(ejω)

∣

∣

∣

∣

2

σ2

Being A(z) and B(z) polynomials in the form:

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + anz−n

B(z) = 1 + b1z
−1 + b2z

−2 + · · · + bmz−m

depending on the values assumed by m and n, the following cases can be

distinguished:
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• autoregressive model (AR), if m = 0 and n 6= 0

• moving average model (MA), if m 6= 0 and n = 0

• autoregressive moving average model (ARMA), if m 6= 0 and n 6= 0

Since AR model coefficients can be estimated through a linear set of

equations, autoregressive models are the most commonly used for practical

applications. Several algorithms are available in literature to estimate the

coefficients of an AR model for the purpose of spectral analysis. In this

work the Maximum Entropy Method (MEM), called also Burg’s algorithm,

was chosen, since it has been proved to provide good results when applied

to EEG signals [47].

The main point of this algorithm is that, given a limited number of values

in the autocorrelation sequence, there exist an infinite number of spectra

φ(ω) matching with the observed data. Maximum entropy spectral analysis

chooses the spectrum corresponding to the most random and unpredictable

time series whose autocorrelation sequence coincides with the observed set

of values.

According to the definition of PSD given in 5.2 the autocorrelation se-

quence can be computed taking the inverse DTFT of φ(ω):

ρ(k) =
1

2π

∫

∞

−∞

φ(ω)ejωk dω (5.6)

Moreover, maximizing the entropy of a random process is equivalent of max-

imizing this quantity:
∫ π

−π

log(φ(ω)) dω (5.7)

Therefore the required PSD estimation φ̂(ω) is the one that maximizes 5.7

and for which 5.6 holds for the observed autocorrelation values. The Burg’s

algorithm shows how to compute the coefficients of an AR model whose PSD

has maximum entropy. For further details about Burg’s algorithm and the

Maximum Entropy Method refer to [60].

Once the AR coefficients have been estimated the associated spectrum is

obtained integrating the PSD in bins of 1 Hz and considering the frequency

band 0-25 Hz. The spectra computed at this stage are used both to compute

EEG features and to provide a feedback to the user.

5.4 Feature computation

At this stage of the processing pipeline a number of features are extracted

from the EEG spectra and a feedback signal is generated for the user.
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The feedback is proportional to the EEG power estimated on channels

C3 and C4 in the frequency bin associated to the mu-rhythm. This bin has

been chosen according to a visual inspection of the spectra performed during

offline analyses. The feedback signal is updated at each data block acquired

and a forgetting factor is applied to avoid flickering. Finally this signal is

normalized in the interval [0, 1] to be displayed by the speller interface.

The main goal of this module is to compute EEG features. These features

have been specifically designed to discriminate among four motor-imagery

tasks:

1. motor imagery of left hand;

2. motor imagery of right hand;

3. motor imagery of both hands;

4. motor imagery of both feet,

As discussed in Section 3.3.3 motor imagery is mainly associated to a de-

synchronization of mu and beta rhythms in the areas of the motor cortex that

are contralateral to the movement. Moreover stronger rhythmic activities

may be also observed in the areas of the cortex that are ipsilateral to the

movement.

Therefore, during left-hand motor imagery an attenuation of the signal

power in the mu/beta frequency bands is expected on channel C4, while

the same frequency bands should show sharp power peaks on channel C3.

Similarly, right-hand motor imagery should be characterized by attenu-

ated mu/beta peaks on C3 and sharp peaks on C4. The motor imagery

of both hands, instead, is associated with de-synchronizations of sensory-

motor rhythms on both hemispheres and a reduction of the signal power on

both channels C3 and C4 is expected. Finally, both-feet motor imagery is

usually characterized by an attenuation of the signal power on channel Cz

and by a strong increase of the rhythmic activities over the hands’ areas

(corresponding to channels C3 and C4).

Feature computation requires all the spectra received during the record-

ing phase to be buffered. When the application triggers the completion of

the recording phase, average spectra are estimated from buffered data and

a number of features are computed based on these average spectra. Two

types of features have been considered:

Average features These features are computed on the EEG spectra av-

eraged over the whole duration of the recording phase (which lasts
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6s). They consider only one average spectrum per channel and they

capture the main signal’s characteristics related to the task performed.

Evolution features These features are computed on the EEG spectra ob-

tained averaging over time windows of 1s. They consider six spectra

per channel and they are designed to figure out how the signal evolve

during the task.

In the following paragraphs a detailed description of these features is re-

ported. A large set of features have been considered in order to extract as

much information as possible and to be able to generalize for different sub-

jects. However only a subset of these features is actually used during online

classification. The subset of features that is computed online is obtained

applying a feature selection algorithm as described in Section 5.5.

5.4.1 Average features

The goal of these features is to capture the main characteristics of the aver-

age spectra estimated for the whole duration of the recording phase. These

features are designed to highlight spectral differences and similarities among

different motor-imagery tasks.

Six channels have been considered in the computation of these features:

C3, C4, Cz, P3, P4, Pz. Channels C3, C4 and Cz have been included

because they are expected to carry most of the information that is relevant

for classification. The choice of including P3, P4 and Pz is motivated by

the fact that these electrodes are in the neighborhood of C3, C4 and Cz and

they can be used to relate the activity of the primary motor cortex with the

surrounding brain areas. Moreover, initial offline analyses revealed on these

channels some relevant task-dependent correlations. Electrodes F3, F4 and

Fz were not included instead, since they have been found to be significantly

affected by ocular artifacts. All other electrodes are too far from the motor

cortex to be source of relevant information for our purposes.

For each of the six channels considered 13 features are computed. Such

features are defined on the basis of five feature points, chosen to be repre-

sentative of the overall shape of a spectrum. In order to define these feature

points we recall that spectra are integrated in 25 bins of 1 Hz, being the

first bin centered at 0 Hz and the last centered at 24 Hz.

The five feature points considered are defined in Table 5.1 and shown in

Figure 5.4, where P (x) denotes the signal power at bin x and the boundary

bins mustart/mustop/betastart/betastop have been determined during offline

analyses.
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Feature point Definition

A = (a ; P(a)) P (a) = min P (x) with x ∈ [0,mustart)

B = (b ; P(b)) P (b) = max P (x) with x ∈ [mustart,mustop]

C = (c ; P(c)) P (c) = minP (x) with x ∈ [mustart,mustop]

D = (d ; P(d)) P (d) = maxP (x) with x ∈ [betastart, betastop]

E = (e ; P(e)) P (e) = minP (x) with x ∈ (betastop, 24]

Table 5.1: Definition of the feature points

Feature name Definition

mu peak P (b)

be peak P (d)

mu sharp (P (b) − P (a)) + (P (b) − P (c))

be sharp (P (d) − P (c)) + (P (d) − P (e))

mu area (c − a)(P (b) − min[P (c), P (a)])

be area (e − c)(P (d) − min[P (e), P (c)])

mb ratio (P (b) − P (d))(P (b) + P (d))

mu bin b

be bin d

mu sum
∑

x∈mu band P (x)

be sum
∑

x∈beta band P (x)

mu std σmu band

be std σbeta band

Table 5.2: Features computed on the average trial spectrum for each single channel

The 13 features defined on the basis of these feature points are listed in

Table 5.2.

Figures 5.4(a) and 5.4(b) show two examples of typical shapes possibly

assumed by EEG spectra. The first spectrum is characterized by evident

peaks in the mu and beta frequency bands, while the second reveals a clear

power attenuation in the same bands. The bar chart in Figure 5.5 shows

that most of the features considered assume different values as the shape

of the spectrum changes. Therefore these features are likely to discriminate

well among different motor-imagery tasks.

The six feature vectors obtained (one for each channel) are in turn em-

ployed to compute new features in which more than one channel is considered

at a time. These new features are computed taking the sum or the relative
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(a) Feature points computed on the spectrum of channel C3 during left-

hand motor imagery
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Figure 5.4: Feature points computed on channels C3 and C4 during left-hand motor

imagery
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Figure 5.5: Single-channel features for the spectra in Figure 5.4. Blue bars refer to the

spectrum with synchronized rhythms (Figure 5.4(a)), while red bars to the spectrum

with de-synchronized rhythms (Figure 5.4(b))
.

difference between pairs of feature vectors associated to different EEG chan-

nels. For example a new feature vector is computed taking fC3 +fC4, where

fC3 and fC4 are the feature vectors of C3 and C4 computed as explained in

Table 5.2. A complete list of these features is given in Table 5.3.

5.4.2 Evolution features

Evolution features are designed to consider how EEG spectra vary over

time within the same recording trial. Indeed, synchronizations and de-

synchronizations happen according to a certain dynamics and the main tem-

poral characteristics of these phenomena may be useful for the purpose of

signal classification.

For example Figure 5.6 shows how the signal’s power in the mu frequency

band vary over time for different motor-imagery tasks. A first observation is

that de-synchronizations mostly happen within the first second of the trial,

while in the following seconds the power of the mu peak remains stationary

or slightly increases. Synchronizations, instead, last for the whole trial du-

ration and signal power seems to increase in a linear fashion (particularly

for left-hand and right-hand tasks). Moreover, the task both-hands, seems

to combine the evolution of channel C4 for task left-hand with the evolution
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Feature name Definition

diff c3 c4 (fC3 − fC4)/(fC3 + fC4)

diff c3 cz (fC3 − fCz)/(fC3 + fCz)

diff c4 cz (fC4 − fCz)/(fC4 + fCz)

diff p3 p4 (fP3 − fP4)/(fP3 + fP4)

diff p3 pz (fP3 − fPz)/(fP3 + fPz)

diff p4 pz (fP4 − fPz)/(fP4 + fPz)

diff cz pz (fCz − fPz)/(fCz + fPz)

sum c3 c4 fC3 + fC4

sum p3 p4 fP3 + fP4

sum cz pz fCz + fPz

sum c3 p3 fC3 + fP3

sum c4 p4 fC4 + fP4

Table 5.3: Features computed combining single-channel features

of channel C3 for task right-hand.

Based on these observations, 21 evolution features have been defined.

As anticipated, the computation of these features relies on six spectra, one

for each second in the recording phase. The channels considered in this case

are only C3, C4 and Cz. A complete list of these features is reported in

Table 5.4.

5.5 Feature selection

Considering both average and evolution features we obtain a total of 255

features per trial. A feature vector with these dimensions is normally too

large to be handled properly by a classifier. Moreover not all features may

be equally discriminative and different features’ combinations may lead to

significantly different classification results. Finally some features may be

good for one user but perform poorly for another one. To overcome these

problems a feature selection algorithm has been applied.

Feature selection involves choosing the subset of features that is sup-

posed to discriminate better among different classes. Feature selection is an

operation performed exclusively offline: once an optimal feature subset has

been chosen, the selected features are just kept to be used online, while all

the others are discarded.

Feature selection requires the definition of:
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Feature name Description

evo c3 mu2 mu-peak at second 2 (C3)

evo c3 mu3 mu-peak at second 3 (C3)

evo c3 mu12k mu-peak linear trend in seconds 1-2 (C3)

evo c3 mu26k mu-peak linear trend in seconds 2-6 (C3)

evo c3 mu12k-mu26k evo c3 mu12k - evo c3 mu26k

evo c3 beta14k beta-peak linear trend in seconds 1-4 (C3)

evo c4 mu2 mu-peak at second 2 (C4)

evo c4 mu3 mu-peak at second 3 (C4)

evo c4 mu12k mu-peak linear trend in seconds 1-2 (C4)

evo c4 mu26k mu-peak linear trend in seconds 2-6 (C4)

evo c4 mu12k-mu26k evo c4 mu12k - evo c3 mu26k

evo c4 beta14k beta-peak linear trend in seconds 1-4 (C4)

evo cz mu13k mu-peak linear trend in seconds 1-3 (Cz)

evo cz lo12k low-band-peak linear trend in seconds 1-2 (Cz)

evo sumc3 mu12k mu-band power linear trend in seconds 1-2 (C3)

evo sumc4 mu12k mu-band power linear trend in seconds 1-2 (C4)

evo sumcz beta12k beta-band power linear trend in seconds 1-2 (Cz)

evo diffc3c4 mu16k mu-peak linear trend in seconds 1-6 (C3-C4)

evo diffc3c4 mu36k mu-peak linear trend in seconds 3-6 (C3-C4)

evo diffc3cz mu13k mu-peak linear trend in seconds 1-3 (C3-Cz)

evo diffc4cz mu13k mu-peak linear trend in seconds 1-6 (C4-Cz)

Table 5.4: Evolution features
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Figure 5.6: Evolution of the mu-peak over time for different tasks. For each task the

mu-peak is depicted for channel C3 (left plot), C4 (middle plot) and for the difference

C3-C4 (right plot). Values for each task are computed averaging on 784 trials in 7

different acquisition dates. Red lines show average values, while blue vertical bars show

standard deviations.
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Figure 5.7: Two alternative approaches to perform feature selection: filters and wrap-

pers

• a search method : an algorithm to find the best candidate subset;

• an objective function: a measure of goodness of the considered feature

subset.

Concerning the objective function, two different feature selection approaches

exist: filters and wrappers. Filters’ objective function is based on intrinsic

properties of data, typically inter-class distance, statistical dependence or

information-theoretic measures. Wrappers, instead, take as objective func-

tion the estimated classification performances obtained with the same clas-

sification algorithm chosen for the problem.

The advantage of filters is that they usually involve a non-iterative com-

putation on the dataset, which can execute much faster than a classifier

training session. Moreover, measuring intrinsic properties of the data, they

give more general results that are non dependent on any specific classifi-

cation algorithm. The problem of filters is that they normally consider a

monotonic objective function and tend to select the full feature set as opti-

mal solution.

Wrappers, instead, while suffering of slow execution times and depen-

dencies on specific classifiers, typically perform better than filters and many

generalization techniques may be employed to avoid overfitting. In this work

a wrapper approach for the computation of the objective function has been

chosen.

Dealing with the search method, instead, three main categories of search

algorithms may be distinguished:
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Exponential algorithms These algorithms are computationally intensive,

since their complexity is exponential with the size of the dataset.

Examples of these algorithms are exhaustive search and Branch and

Bound.

Sequential algorithms These algorithms add or remove features sequen-

tially, they are very simple to implement but they are strongly affected

by local minima. These methods may be a good choice only if the size

of the feature set is reduced.

Randomized algorithms These algorithms include some sort of random-

ness during the search in order to escape from local minima. Examples

are Simulated Annealing and Genetic Algorithm (GA).

Given the number of features considered, both exponential and sequential

algorithms have been found to be unusable for our problem. Genetic algo-

rithms, instead, have been already applied in BCI research [11] and proved

to perform well when search spaces with high dimensions are considered.

For these reasons the search method we have chosen for feature selection is

based on a genetic algorithm.

5.5.1 Genetic Algorithm

Genetic algorithms are a class of optimization algorithms that use techniques

inspired by evolutionary biology to find exact or approximate solutions to

search problems. These algorithms work by considering potential solutions

to the problem, evaluating them, and combining parts of good solution in

order to find better candidate solutions.

A GA starts its search from a pool of hypotheses, called initial popu-

lation. Each individual in the population is a chromosome representing a

possible solution to the search problem. The genetic algorithm performs an

iterative search starting from the initial population. On each iteration, all

members of the population are evaluated according to a fitness function (the

objective function of the search problem) and a new population is generated

probabilistically from the current one. Some individuals, having high fitness

values, can be carried forward into the next generation population intact

(elitism). Others are used as the basis for creating new offspring individuals

by applying genetic operations such as crossover and mutation. The iter-

ation stops when the optimal solution is found or when one of the defined

stopping criteria is met.

In our approach, the GA is used to select the best features to be fed to the

classifier. The chromosome of each individual is a bit vector which contains
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255 elements (genes) corresponding to the full set of features available. Each

chromosome encodes a feature selection in this simple way: if a bit is set to

1 the corresponding feature is selected, otherwise it is discarded.

As discussed before, the fitness function employed follows a wrapper ap-

proach. It is indeed a measure of the average performance obtained with

offline signal classification. Classification performances are measured ac-

cording to a k-fold cross-validation scheme, which is described in Section

7.1.5 and allows a good generalization avoiding overfitting. Two different

versions of the fitness function have been considered. The first one is the

following:

f1 = −
1

K

K
∑

k=1

µ(k) (5.8)

where k indicates a validation set and µ(k) is the overall classification accu-

racy obtained on validation set k. Thus, in this case, the fitness is computed

as the average classification accuracy over all validation sets. This quantity

is taken with a minus sign, since the fitness function is minimized by the

genetic algorithm. This fitness is in some sense “greedy”, since it selects the

subset of features yielding to the best average accuracy, regardless on how

this accuracy was obtained. The weakness of this approach is that variances

in the classification performances are not taken into account. This may lead

to a solution in which the accuracy average is high, but significant varia-

tions exist when different validation sets and different classes are considered.

Since our goal is to obtain a classification that is robust over all validation

sets and no class should be preferred, a second version of the fitness function

has been defined as follows:

f2 = f1 + w1t1 + w2t2 (5.9)

t1 =
1

K − 1

√

√

√

√

K
∑

k=1

(µ(k) − µ)2 (5.10)

t2 =
1

K

K
∑

k=1

σ(k) (5.11)

where

µ =
1

K

K
∑

k=1

µ(k) (5.12)

and σ(k) is the inter-class standard deviation of the accuracies obtained on

validation set k.
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This second fitness function is obtained adding to f1 (computed as in

5.8) the terms t1 and t2, whose goal is to penalize the solutions with high

accuracy variances. In particular t1 accounts for the accuracy variance across

validation sets, while the second term t2 accounts for the inter-class accuracy

variance. The weights w1 and w2 are used to tune the influence of these terms

on the final fitness value. In our algorithm w1 and w2 have been taken both

equal to 10, according to empirical analyses and considerations.

Both fitness functions have been tested performing offline classification

with the features selected by the two algorithms. As expected, features

selected by fitness f1 yielded to improved accuracy means but led to high

accuracy variances, while features selected by f2 kept variances low resulting

in a more robust classification. This was particularly true for subjects with

high variability across sessions and unbalanced class accuracies. For this

reason the GA with fitness f2 has been finally chosen for feature selection.

The genetic operators employed are instead the following:

Crossover A new chromosome is generated from its parents based on a

randomly generated binary vector. The genes of the new chromosome

are taken from the first parent if there is a 1 in the binary vector, and

from the second parent if there is a 0 in the binary vector.

Mutation Each gene in the chromosome has a very small probability to be

mutated. When a gene is chosen for mutation, the corresponding bit

in the chromosome is inverted.

Finally, a stopping criterium has been defined based on the number

of stall generations reached. In a stall generation the fitness of the best

chromosome is not improved with respect to the parent generation (with

a tolerance of 10−6). It was imposed a limit of 100 stall generation before

stopping the GA’s iterations.

5.6 Feature extraction

Before proceeding with classification all the features selected by the GA

are projected into a lower-dimensional feature space. This operation is

performed applying the Fisher Discriminant Analysis (FDA). Fisher Dis-

criminant Analysis is a supervised method whose objective is to perform

dimensionality reduction while preserving as much of the class discrimina-

tory information as possible. The main idea of FDA is to maximize the

difference between the projected class means whereas the internal variance
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Figure 5.8: Fisher Discriminant Analysis

of each projected class is minimized. Formally we’re looking for the projec-

tion matrix Ŵ that maximizes this ratio:

J(W ) =
|W TSBW |

|W T SW W |
(5.13)

Where SW and SB are respectively the within-scatter matrix and the between-

scatter matrix. The within-scatter matrix measures the variance within

classes and it is defined as follows:

SW =

C
∑

i=1

Si (5.14)

, where i iterates over all the C classes available and:

Si =
∑

x∈ωi

(x − µi)(x − µi)
T being µi =

1

Ni

∑

x∈ωi

x

and being Ni the number of elements in class ωi. The between-scatter

matrix, instead, measures the distance between the means of each class and

is defined as follows:

SB =

C
∑

i=1

(µi − µ)(µi − µ)T being µ =
1

N

∑

∀x

x (5.15)

It can be shown [18] that the optimal projection matrix Ŵ is the one

whose columns are the eigenvectors corresponding to the largest eigenvalues

of the following generalized eigenvalue problem:

(SB − λiSW )ŵi = 0 (5.16)
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Fisher’s linear projection has been proven to be optimal for binary classifi-

cation problems and if the input data is assumed to be normally distributed.

Though only few of the features considered have been found to be strictly

gaussian (the Jarque-Bera statistical test [32] was applied for the purpose),

when applied to our data, the projection produced well shaped feature clus-

ters that are suitable for linear classification (see Figure 5.9 ).

Features are projected in C − 1 dimensions where C is the number of

classes. Indeed this is the maximum number of dimensions that can be

obtained with FDA and also the best choice for linear classification. The

Fisher’s projection matrix W has been estimated offline with training data,

while during online processing only a matrix multiplication is required at

this stage.

5.7 Classification

As discussed in Section 3.6 many different techniques have been used for

the purpose of signal classification. In the BCI field, linear classifiers are

probably the most popular algorithms employed. This is because they can

cope very well with the main characteristics of BCI features, in particular:

Presence of noise and outliers BCI features are very likely to be noisy

or affected by outliers because of their poor signal-to-noise ratio;

High dimensionality The number of features employed for EEG signals

is normally high, since several channels in different time segments need

to be considered;

Small training sets Training sets are relatively small, since the training

process is time consuming and demanding for the subjects.

Indeed, because of their low complexity, linear classifiers are generally con-

sidered to be stable and they can be trained even with a limited amount of

data.

Two kinds of linear classifiers have been mainly employed in the BCI

field: Linear Discriminant Analysis (LDA) and Support Vector Machines

(SVMs). Both methods use hyperplanes to partition the feature space in

regions, each corresponding to a different classification label. Support Vec-

tor Machines differentiate from LDA in the way hyperplanes are chosen:

among all possible separating hyperplanes SVMs choose the ones that max-

imize inter-class margins, i.e. the distance from the nearest training points

of different classes. When binary problems are considered, support vector
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Figure 5.9: Examples of projected feature clusters obtained applying FDA to a 4-class

classification problem: left hand (red), right hand (yellow), both hands (cyan), feet

(blue)



5.7. Classification 73

machines usually perform better than LDA, since they provide better gener-

alization capabilities. Anyway, when both SVMs and LDA have been tested

on our multi-class classification problem, LDA resulted with better perfor-

mances. This is probably because LDA can cope better with multi-class

problems. For these reasons, linear discriminant analysis has been chosen

in this work.

5.7.1 Linear Discriminant Analysis

The classification criterion considered by LDA is the total error of classifica-

tion (TEC), which requires to make the proportion of misclassified objects

as small as possible. In other words we want to minimize the probability of

misclassification assigning an object to the class with the highest conditional

probability.

Formally, if Y is a discrete random variable with values c1, c2 . . . , cn rep-

resenting the classes to be predicted and X is a random vector representing

the input features, given an observed feature vector x, we are looking the

class ĉ such that:

ĉ = arg max
ci

P (Y = ci|X = x) (5.17)

This approach is called Maximum A Posteriori (MAP) because it requires

to maximize the posterior probability of the class, given the feature vector

observed. Since P (Y = ci|X = x) is not easy to be estimated, the Bayes

theorem can be applied to rewrite this probability in the form:

P (Y = ci|X = x) =
P (X = x|Y = ci)P (Y = ci)

∑

cj
P (X = x|Y = cj)P (Y = cj)

(5.18)

Since the denominator remains equal for each ci considered, we just need to

maximize the nominator:

ĉ = arg max
ci

P (X = x|Y = ci)P (Y = ci) (5.19)

where P (Y = ci) is the prior probability of class ci and P (X = x|Y = ci)

is the likelihood that feature x belongs to class ci. Since all classes are

considered to be equiprobable, P (Y = ci) is simply computed as 1/n (where

n is the number of classes).

To compute P (X = x|Y = ci), instead, LDA assumes that each class has

a multivariate normal distribution with mean µci
and that all classes have

the same covariance matrix C. With these assumptions, it can be shown

that Equation 5.19 can be rewritten in this form:

ĉ = arg max
i

fi(x) (5.20)
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where:

fi(x) = µiC
−1xT −

1

2
µiC

−1µT
i + log(P (Y = ci)) (5.21)

For a complete derivation of the LDA formula refer to [37]. As anticipated,

matrix C is the pooled estimate of covariance and it is computed in the same

way as the within-scatter matrix SW in Equation 5.14. Function fi(x) is the

discriminant function of class ci and corresponds to a linear projection of

the feature vector x. In its general form the linear discriminant function for

class ci can be defined as:

gi(x) = W T
i x + bi (5.22)

and the hyper-plane denoted by the equation:

W T
i x + bi = 0 (5.23)

separates the region of class ci from the remaining part of the feature space.

In the BCI processing pipeline implemented in this work, classification

is performed with the LDA method as soon as the application triggers the

completion of the recording phase. The parameters µi and C are estimated

offline on training data.



Chapter 6

The speller interface and the

prediction module

“Good communication is as stimulating as black coffee and just as hard to

sleep after.”

Anne Morrow Lindbergh, Gift From the Sea

This chapter is composed of two main parts: the first part describes

the user interface adopted for the spelling application, while the second is

about the prediction module. Dealing with the first part, the set of symbols

chosen (Section 6.1.1), the symbol selection strategy (Section 6.1.2) and the

problem of handling errors (Section 6.1.3) are first discussed. Then a gen-

eral model to define user interfaces for the speller is proposed (Section 6.1.4)

and three different interface versions are presented (Section 6.1.5), provid-

ing the details for one of them (Section 6.1.6). Dealing with the prediction

module, we describe the training corpus (Section 6.2.1), the statistical lan-

guage model (Section 6.2.2) and the algorithms used to provide language

predictions to the spelling application (Section 6.2.3).

6.1 Design of the speller interface

The model of the speller interface plays a very important role in the design

of the whole spelling application. Indeed the way selections are presented

to the user significantly influences both the efficiency and usability of the

final system. The main functional requirements that have been considered

while modeling the user interface of the speller are summarized here. The

interface shall:



76 Chapter 6. The speller interface and the prediction module

• enable the composition of plain text in english language by means of

a discrete control signal with three or four different states;

• provide a number of auxiliary functions that may be activated during

the composition i.e, speech synthesis, word deletion, quit;

• deal with errors introduced by incorrect BCI classifications or by wrong

selections performed by the user.

Moreover some important non-functional requirements have been taken into

account too:

Usability The interface shall be intuitive and predictable. Solutions that

may disorient or confuse the user shall be avoided, while repetitive

schemes and patterns that may be easily recognized and assimilated

by the user shall be preferred.

Formalization The interface structure and behavior shall rely on a formal

model. Having such a model is required in order to plug different

versions of the user interface in the same application and to implement

automatic simulators assessing the user interface’s performances.

Predictive capabilities The interface shall exploit redundancies in natu-

ral language in order to speedup the composition process.

6.1.1 Symbols and functions

Before starting the actual design of the user interface we need to specify

which is the set of language symbols considered and which are the auxiliary

functions to be provided by the application.

In this work verbal communication symbols have been employed and

the english language has been chosen to convey messages. As discussed

in Section 2.2.3 natural language is indeed most commonly preferred to

iconic alphabets for applications in which the target users are cognitively

sane. This is because verbal communication can be much more expressive

compared to icons and people with motor disorders would normally prefer to

use their original language rather than learn new communication paradigms.

Therefore, the set of symbols considered is composed by the standard 26

letters of the english alphabet plus the spacing character. In order to keep

the application as simple as possible no other punctuation character has been

considered. Moreover no distinction has been made between uppercase and

lowercase letters and, by convention, all letters were taken lowercase.
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Function Description

Undo Recovers the previous state of the interface after

an erroneous selection

Exit menu Exits from a menu

Predictions Allows the selection of an entire word from a set

of predictions

Delete char Deletes the latest character inserted

Delete word Deletes the latest word inserted

Speak Activates the vocal synthesizer to reproduce the

currently composed text

Add to dictionary Enables all symbols that may have been disabled

as a result of letter prediction

Numbers Switches the symbol set from letters to numbers

Letters Switches the symbol set from numbers to letters

Quit Terminates the application

Table 6.1: Set of auxiliary functions considered in the design of the speller interface

In addition, the possibility of writing numbers has been considered too.

Anyway numbers are kept separate from letters in the user interface, since

they are less frequent in natural language and we do not want to penalize

the selection of letters enlarging the set of symbols considered during normal

text composition. The set of auxiliary functions regarded in designing of the

speller interface are reported in Table 6.1.

6.1.2 Symbol selection strategy

The main problem of any AAC application is that a large set of language

symbols needs to be mapped into a very limited set of control states. Con-

sidering just lowercase letters and the spacing character there are indeed 27

symbols that need to be selected with a maximum of four discrete control

states. Therefore direct selection is obviously impossible, while both scan-

ning and encoding techniques may be applied as symbols’ selection strate-

gies.

Scanning methods are usually preferred when only a binary control state

is available and when the control signal can be produced in a limited amount

of time. Indeed a scanning process requires to either accept or reject a single

choice and all possibilities are repeatedly scanned till one of them is accepted

by the user. Since scanning is a time consuming process itself, combining
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this strategy with a control signal that is produced in a relatively long time

may result in very poor communication rates. Moreover, within a scanning

paradigm, it is not possible to take advantage from a control signal having

more than two states.

Being the output rate of the brain-computer interface quite slow (clas-

sification is performed over a signal window of 6s) and being at least three

control states available, an encoding strategy has been preferred over scan-

ning. In this application, encoding is obtained grouping symbols in a hier-

archical tree of targets and the selection of one symbol is performed through

recursive targets’ expansions. As discussed in Section 2.2.3 this can be re-

garded an encoding technique, since each symbol is encoded in the sequence

of targets that need to be expanded for its selection.

Considering 27 symbols grouped in three targets this strategy requires

three selections for each symbol. In order to speedup the selection process

exploiting redundancies in natural language, two different solutions have

been considered: dynamic symbol arrangement and static symbol arrange-

ment.

Dynamic symbol arrangement

The main idea of this approach is to consider groups of letters with different

sizes and to assign more probable letters to groups having lower cardinal-

ities (see Figure 6.1(a)). Indeed smaller groups are expanded through less

selections steps and therefore their symbols are selected in a fewer amount

of time.

This idea was inspired by the studies of Claude E. Shannon about the

entropy of english language that was estimated to be around 2.14 bits per

letter [54] when all preceding letters within the word boundaries are known.

This value is significantly lower compared to the entropy computed when no

information about preceding letters is available, which is log2(27) = 4.75.

Considering an N -ary selection the number K of selections required for each

symbol can be computed as:

K = 2
H
N (6.1)

where H is the entropy of the language computed in bits. This means that,

adopting an optimal encoding scheme based on the composition context, an

average of 1.64 selections per symbol is required.

The problem with this approach is that, in order to take advantage from

letter prediction, it is required to change the way letters are encoded when-

ever a new letter is inserted in text. Therefore each time the composition

context changes all symbols must be rearranged in their correct groups.
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(b) Static symbol arrangement

Figure 6.1: Examples of two possible interfaces adopting dynamic and static symbol

arrangements. In the case considered the user wants to write the phrase “what a won-

derful day” and has already entered the string “what a w”. The same letter prediction

algorithm is supposed for both cases. The letters associated with non-zero probabilities

for the context considered are (in order of probability): “a”, “e”, “h”, “i”, “o”, “r”.

The dynamic interface groups the 27 symbols as shown in Figure 6.2(a) assigning to

smaller groups symbols with higher probabilities. The static interface, instead, employes

balanced groups (see Figure 6.2(b)) and disables symbols with zero probability. In both

cases selecting the letter “o” requires two groups expansions.
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Figure 6.2: Possible grouping strategies of 27 symbols in three groups for interfaces

with dynamic and static symbol arrangement. Each node in the tree denotes a group

and is labelled with the number of symbols contained.

This results in a dynamic user interface that is updated frequently, and that

requires the user to continuously go through all groups searching for the

desired symbol. It’s clear that an interface of this type would be quite hard

to manage from a cognitively point of view.

Static symbol arrangement

With static symbol arrangement, instead, all symbols are kept fixed in the

same groups and they are enabled or disabled according to their probability

in the current composition context (see Figure 6.1(b)). This way, a group

having just one symbol enabled does not require further expansions and

all successive selection steps are spared. With this method it is possible
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to combine the requirement of improving the communication rate through

letter prediction, while keeping the user interface simple and cognitively easy

to manage. For these reasons static symbol arrangement has been adopted

in the scope of this thesis. Further details about how letters are enabled or

disabled are given in Section 6.2.3.

6.1.3 Handling errors

An important requirement in the design of the user interface is the capability

of handling errors in an efficient way. There are basically three types of errors

that may occur while using the spelling application:

BCI errors These errors are caused by a wrong classification of the EEG

signal and are the most likely to happen. The BCI module, indeed,

provides classification accuracies that are often quite far from 100%.

This is mainly because the EEG signal is characterized by a poor

signal-to-noise ratio and it’s strongly influenced by the presence of ar-

tifacts. Moreover a decreasing level of concentration during the usage

of the application or feelings like frustration and edginess may influ-

ence significantly the performances of the brain-computer interface.

Errors caused by the user interface These errors occur when the user

fails to interpret the current interface state of the speller. Errors of

this type are less common than BCI errors but still present, especially

if the user has not much experience with the spelling application. For

example, in some experimental sessions it happened that the user be-

lieved to have successfully entered a symbol while a final selection was

still missing. Other typical errors of this kind are to forget entering the

spacing character at the end of a word, or to be unsure about which

interface state will follow an undo operation.

User errors These errors are due to a change of mind of the user about the

text that was intended to write. These errors are less common than the

others because the user usually thinks carefully about what to write

before starting the actual acquisition session. The timings imposed by

the BCI are indeed quite strict and formulating or changing a phrase

during composition it’s quite a hard task.

Errors belonging to the first two categories can be regarded as similar

since they are immediately recognized by the user as soon as they occur.

This is because the user is expecting to select a certain choice or to reach

a specific interface state but the application responds differently from what
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expected. In order to correct these errors efficiently there should be always

a fast way of reverting the last selection performed, restoring the interface

state that was immediately before the error.

Errors due to a change of mind of the user are instead quite different.

In this case it is normally required to restore an interface state that is far

away from the current one. Indeed, since the selection of one letter requires

on average two or three selections, changing an entire word means reverting

an interface state that could be a lot of steps behind. Obviously it’s not

worth to go through all intermediate states step-by-step and a better way

of handling these errors would be to activate auxiliary functions to delete a

character or an entire word.

Since the number of choices available at each selection step is very lim-

ited, it is impossible to deal with all kinds of errors at any time during the

composition. Therefore, while modeling the user interface, it has been con-

sidered that errors belonging to the first two classes are more probable than

others. As a consequence, the “undo” function (restoring the latest interface

state) has been proposed more frequently during composition compared to

the functions “delete char” or “delete word”.

6.1.4 Modeling the user interface

The formalism chosen in order to model the user interface structure and

behavior is Push Down Automaton (PDA). Push down automata are an ex-

tension of Finite State Machines (FSM) in which along with input symbols,

states and transitions, it’s provided also a stack of symbols that can be used

in defining the machine behavior. Therefore in a PDA:

• the transition to take is determined by the current state, the input

symbol, and the symbol on top of the stack;

• in performing a transition a stack manipulation may be performed.

In the interface models designed for this thesis, a state corresponds to a set

of choices proposed to the user, while the stack is used in order to keep in

memory the history of past states. Using a stack is indeed easy to model

the undo operations that are required to deal with erroneous selections.

A state is identified by a set of targets each displaying a different choice

to be selected. One target may be associated to a set of symbols to be ex-

panded or to a function to be activated. Considering four available choices,

each state has thus four targets and four transitions departing from it. Each

transition determines which is the next state to display when the corre-

sponding target is selected.
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Moreover, in order to ensure the consistency of the interface models,

some constraints have been defined on states and transitions. These con-

straints specify which states are admissible following a specific type of tran-

sition. Transitions may be indeed organized in four main categories:

Action Transitions of type action are all transitions that, if taken, will

result in a modification of the internal state of the application. These

are the most common transitions and they are associated for example

to the expansion of a set of symbols, the selection of a suggested word,

the deletion of a word, etc. When a transition of type action is taken

the source state is pushed on the top of the stack.

Undo Transitions of type undo are transitions whose goal is to recover the

interface state that was immediately before the last action-transition.

Therefore when a transition of this type is taken the next state is

popped from the top of the stack.

Menu Transitions of type menu are associated exclusively to menu ex-

pansions and do not modify the internal state of the application. A

transition of type menu is associated for example to the target “predic-

tions”, which brings to an interface state displaying a set of suggested

words. Transitions of this type do not read nor modify the content of

the stack.

Exit menu Transitions of type exit-menu are used to restore the interface

state from where the last menu-transition was taken. These transitions

define explicitly their end-point and do not read nor modify the content

of the stack.

The consistency constraints characterizing a valid user interface model are

the following:

1. action-transitions shall bring to states in which an undo-transition is

directly available or is available in a directly reachable state;

2. menu-transitions shall bring to states in which a transition of type

exit-menu is directly available;

3. transitions of type exit-menu are admissible only in states that are

reachable by menu-transitions.

These constraints basically ensure that, when a transition is taken by mis-

take, it is possible to recover the error with one or at most two further

selections. As discussed in Section 6.1.3 this decision is motivated by the
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fact that the control signal produced by the BCI is not reliable and the most

likely errors are due to wrong classifications of the EEG signal.

6.1.5 Three versions of the user interface

As anticipated in Section 4.2 three different versions of the user interface

have been designed and implemented:

1. an interface with four targets per state controlled by a 4-class control

signal;

2. an interface with three targets per state controlled by a 3-class control

signal;

3. an interface with four targets per state controlled by a 3-class control

signal;

The interface with four targets and four classes is the first being consid-

ered and the one from which the other two are derived. A detailed descrip-

tion of this interface is reported in Section 6.1.6.

The interface with three targets and three classes is a variation of the

first version having just symbols and functions rearranged in order to fit in

three targets rather than four. Anyway the functionalities provided and the

main interface patterns are the same as in the first version.

The interface with four targets and three classes is instead structurally

identical to the first one, but employing a two-step selection process. Consid-

ering the model described in 6.1.4 the two-step selection can be interpreted

as follows:

1. In the first step a binary classification is performed deciding whether

to perform an error correction (following an undo or an exit-menu

transition) or to continue with the other three available transitions.

2. In the second step a 3-class classification is performed selecting one

of the three remaining transitions. Obviously the second phase is

not required if, during the first step, an error correction has been

performed.

The main idea supporting this choice is that, since there is always one

transition whose semantics is “go back” and three transitions whose seman-

tics is “go on”, this seems to be the best point for splitting the selection

process. Moreover, the interface was designed in such a way that an error

correction is always associated with a target positioned in the bottom part
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of the screen, while the other three targets (in position left, top and right)

are normally1 associated with action or menu transitions.

6.1.6 User interface model with four targets

Being the user interface model with four targets the most general one, a de-

tailed description of this interface is reported here. The model is illustrated

in Figure 6.3. Each state is labelled with the contents of its targets, that

are located at the four corners of the screen: left (L), top (T), right (R)

and bottom (B). Action-transitions are depicted in black, undo-transitions

in red, menu-transitions in blue and transitions of type exit-menu in green.

As stated in Section 6.1.4 action-transitions are followed by a push of

their source state on the stack, while undo-transitions recover the last state

saved on top of the stack.

In the left part of the diagram there are all interface states by means

of which letters are selectable through recursive targets’ expansions. The

left, top and right targets in the starting state contain nine letters each,

becoming three letters at the second level and just one letter at the third

level.

While at levels two and three the bottom target is simply associated to

an undo-transition, in the top-level state the same target is associated to

a menu-transition. The reason for this is that we want to provide a set of

auxiliary functions once the selection of one letter is completed, but we want

to keep the function “undo” as near as possible during groups’ expansions.

The functionalities provided after the completion of each letter are “add

to dictionary” and “predictions”. The first activates all symbols that may

have been disabled because of letter prediction, while the second is actually

a menu-transition pointing to another state in which three predicted words

are selectable.

The function “add to dictionary” is useless during groups’ expansion,

since disabled letters are already visible at the top-level state and they are

not changed till letter selection is completed. The function “prediction”,

instead, may be useful also at lower levels, since predictions are kept updated

during groups’ expansion. However we preferred to have an undo operation

directly accessible and to delay the availability of predictions after letter

completion.

1There are some states in which there is both an exit-menu and an undo transition.

In these cases the exit-menu is associated to the bottom target and the undo to the left

target, since here the last selection to be corrected is actually the menu expansion
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Figure 6.3: User interface model with four targets. Each state is labelled with the

contents of its targets located at position left (L), top (T), right (R) and bottom (B).

Action-transitions are depicted in black, undo-transitions in red, menu-transitions in

blue and transitions of type exit-menu in green.
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Once one symbol has been selected, it is appended in text and an action-

transition is taken. This transition brings always to the starting state except

for the case in which a spacing character is selected. In this case, indeed, an

entire word has been completed and more functionalities are made available

by the user interface.

As shown on the diagram, the transition departing from the spacing

character reaches a state in which the targets in position left, right and

top still contain the top-level groups of letters, while the bottom transition

points to a different menu.

This menu, and its nested sub-menus, along with “add to dictionary”

and “predictions” provide also the following functions: “delete world”, “nu-

meric”, “speak” and “quit”. Since it is not very probable that we want to

use one of these functions while we are in the middle of a word, they are

provided only after word completion.

The function “numeric” brings to a set of states in which numbers are

selectable. During the composition of numbers predictions are obviously

not available. Finally, the menu accessible through the top-level state in

the numeric environment provides the following functions: “undo”, “delete

character” and “letters”. Selecting the target “letters” a spacing character

is added in text and the state containing the top-level groups of letters is

restored.

6.2 Design of the prediction module

The goal of the prediction module is to provide language predictions to

the spelling application. This module is informed by the speller interface

about the current composition context and queries a statistical language

model to estimate words’ and letters’ probabilities. The language model is

trained computing statistics on a corpus of texts that have been chosen to

be representative for the communication domain considered.

The first part of this section presents the language corpus and explains

how training texts have been selected. The second part describes in details

the statistical language model applied, while the last part shows how words’

and letters’ predictions are computed evaluating the statistical language

model.

6.2.1 The training corpus

The selection of the training corpus plays an important role in the design of

any text prediction system. Indeed statistical language models need to be
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Figure 6.4: Prediction module

trained with a large selection of texts in order to produce reliable probability

estimates. Moreover, the more the training corpus is similar to the kind of

communication being considered, the more these probability estimates will

be accurate.

In the scope of this thesis the kind of communication to be modeled

is very particular. Indeed the target users of our application are subjects

with severe motor impairments that want to express their thoughts, needs

or feelings by means of a brain-computer interface. Since no specific corpora

are available for this particular communication environment other commu-

nication domains with similar characteristics had to be considered.

A promising solution would have been to employ a collection of texts

written by impaired subjects by means of other AAC devices. However no

such corpus have been found to be available for the purpose of statistical

language modeling. For these reasons we decided to adopt a generic language

corpus for the english language and to extract from it a partition of texts

considered to be representative for the kind of communication of our interest.

The language corpus adopted is the British National Corpus (BNC).

The british national corpus is a collection of more than 100 million words

sampled from a large range of sources. The BNC has been designed to

be representative of a wide cross-section of british english both spoken and

written. The written part of the BNC includes, for example, extracts from

newspapers, specialist periodicals, journals, books, letters and school essays.

The spoken part, instead, consists of orthographic transcriptions of informal

conversations and spoken language collected in different contexts, ranging
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Attribute Values

Respondent age group

0-14

15-24

25-34

35-44

45-59

60+

Respondent social class

Higher management

Lower management

Skilled manual

Semi-skilled or unskilled

Respondent sex
Male

Female

Spoken context

Educational-informative

Business

Public-institutional

Leisure

Interaction type
Monologue

Dialogue

Region where captured

South

Midlands

North

Table 6.2: List of categories considered by the British National Corpus for spoken text

from formal business to radio shows and telephonic conversations.

All texts in the BNC are categorized with a number of attributes and all

text tokens are tagged with their corresponding part-of-speech2 (PoS). Since

the language model adopted is based only on word frequencies the syntactic

information provided was not considered. Texts’ categories, instead, have

been useful in order to extract form the corpus a partition of texts suitable

for our purposes.

The corpus partition chosen includes only spoken text, since speech has

been considered closer to the type of communication we are dealing with.

Indeed speech is normally simpler than written text and informal conversa-

tions have been considered the best choice to model what a typical user of

the spelling application may need to communicate. The attributes consid-

2Traditional grammar classifies words based on eight parts of speech: verb, noun,

pronoun, adjective, adverb, preposition, conjunction, and interjection.
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ered by the BNC for spoken texts are listed in Table 6.2.1 along with their

possible values.

The partition chosen considers only texts with respondent age ranging

from 15 to 44 years and with a spoken context that is either educational-

informative or leisure. No other distinction has been made by social class,

sex, interaction type or region. Applying this partition, 107 training texts

have been extracted from the initial corpus, with a total number of 3.315.187

word occurrences.

All texts extracted were post-processed in order to convert all letters to

lowercase and to eliminate punctuation characters. In this way only the set

of symbols provided by the speller interface have been considered in training

the statistical language model.

6.2.2 The statistical language model

The statistical language model chosen for this work is the Katz backoff

model. As discussed in Section 2.3.2 the main idea of Katz backoff is to

consider N-grams with lower orders when counts for the higher orders are not

available in training data. In particular a trigram model has been employed

for the highest order and backoff is performed recursively on bigrams and

unigrams. The general formula for N-gram backoff given in 2.16, when

applied to the trigram case, can be rewritten as follows:

Pkatz(wk|wk−2, wk−1) =











P ∗(wk|wk−2, wk−1) if C(wk−2, wk−1, wk) > 0

α(wk−2, wk−1)Pkatz(wk|wk−1) if C(wk−2, wk−1) > 0

Pkatz(wk|wk−1) otherwise

(6.2)

where:

Pkatz(wk|wk−1) =

{

P ∗(wk|wk−1) if C(wk−1, wk) > 0

α(wk−1)P
∗(wk) otherwise

(6.3)

Being P ∗ the discounted probability computed with the Good-Turing

estimate (see 2.14) and α the backoff coefficients computed as shown in

2.20.

The language model have been generated in the ARPA format using the

Cambridge-CMU toolkit [13]. In the ARPA format each N-gram entry is

stored with its discounted log probability P ∗ and its backoff weight α. Thus

for a trigram grammar, the format of each N-gram is the one reported in

Table 6.3.
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N-gram Format

unigram log P ∗(wk) wk log α(wk)

bigram log P ∗(wk|wk−1) wk−1 wk log α(wk−1, wk)

trigram log P ∗(wk|wk−2, wk−1) wk−2 wk−1 wk

Table 6.3: ARPA format for a backoff language model

The model was built considering a vocabulary of 20.000 words, being

these the most frequent words extracted from the training corpus. A vo-

cabulary based on frequencies is indeed often employed in language model-

ing since it keeps the model compact discarding all tokens that occur very

rarely in training data. Moreover an “open vocabulary” approach has been

adopted, meaning that all out-of-vocabulary words have been mapped to

the same symbol in the language model.

Finally, Good-Turing smoothing has been applied only if the correspond-

ing N-gram counts were below a given threshold K. Thus N-gram counts

greater than K have been considered to be reliable, while counts below this

threshold have been re-estimated with the Good-Turing smoothing tech-

nique. The value of K was taken equal to 7 for bigrams and trigrams and

equal to 1 for unigrams. The final language model generated in this way

contains a total of 20.001 unigrams, 517.537 bigrams and 1.648.226 trigrams.

6.2.3 Computing word predictions and letters’ probabilities

Word predictions and letters’ probabilities are computed evaluating the lan-

guage model for the current composition context. The composition context

is constantly kept updated with messages received from the speller interface

and provides information about:

1. the words entered before the current word being composed;

2. the prefix of the current word;

3. the set of letters that are selectable from the current state of the in-

terface.

Both word predictions and letters’ probabilities are computed starting from

a list of candidate words extracted from the vocabulary. This list contains

all words that match with the current prefix and such that the first letter

after the prefix is selectable from the speller interface. For example if the

current prefix is “w” and only the letters “a”, “e”, “h”, “i” are selectable



92 Chapter 6. The speller interface and the prediction module

from the interface, the word “well” is a possible candidate, but the word

“wonderful” not.

For each candidate word the corresponding probability is estimated query-

ing the statistical language model. For this purpose Equation 6.2 is applied

considering the two preceding word tokens in the composition context. Once

the probabilities of all candidates have been estimated, predicted words are

the N words with the highest probabilities, being N = 3 or N = 2 depending

on the interface considered.

The computation of letters’ probabilities relies on these words’ proba-

bilities too. Indeed, being l0, l1, . . . , ln−1 the prefix entered for the current

word and being wk−2, wk−1 the two preceding word tokens, the probability

of the next letter to be ln is computed as:

P (ln|l0, l1, . . . , ln−1, wk−2, wk−1) =

∑

wk∈W n P (wk|wk−2, wk−1)
∑

wk∈W n−1 P (wk|wk−2, wk−1)
(6.4)

where W n is the set of words with prefix l0, l1, . . . , ln−1, ln. Therefore we sum

up all the probabilities of the words having ln after the entered prefix and

we normalize by the total probability of all candidate words. For example,

if the entered text is “the old ca”, the probability of “t” might be computed

as:

P (t|c, a, the, old) =

P (cat|the, old) + P (category|the, old)

P (cat|the, old) + P (category|the, old) + P (car|the, old) + P (camp|the, old)
(6.5)

Letters’ probabilities are used in order to enable or disable letters in the

speller interface. Indeed, only letters with probabilities over a given thresh-

old will result to be enabled. In our experiments we enabled all letters with

non-zero probabilities, but other threshold values may be easily configured

too.
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Figure 6.5: Algorithm to compute language predictions



94 Chapter 6. The speller interface and the prediction module



Chapter 7

Experiments, tests and

results

“Good tests kill flawed theories; we remain alive to guess again.”

Karl Popper

This chapter describes all the experiments and the tests performed for

this thesis along with a discussion on the results obtained. Section 7.1 deals

with the performances of the BCI module, Section 7.2 deals with the perfor-

mances of the speller interface and Section 7.3 reports the tests performed

on the overall system. Finally in Section 7.4 we compare the results achieved

with similar works reported in literature.

7.1 Experiments and tests with the BCI

BCI experiments have been performed at the AirLab, the Artificial Intelli-

gence & Robotics Laboratory at Politecnico di Milano from September 2008

to June 2009. This section describes the instrumentation adopted, the sub-

jects involved, the protocols chosen and all the different BCI experiments

performed.

7.1.1 Instrumentation

In order to acquire, digitalize and amplify the EEG signals we used the

BE Light amplifier (EBNeuro Spa, Florence, Italy), which is shown in Fig-

ure 7.1(a). The amplifier has 28 channels: 21 monopolar, 4 bipolar, and 3

monopolar with a separate reference (polygraphic). The unit is connected
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to a laptop through an optical fiber cable that electrically isolates the com-

puter from the amplifier and the subject. The laptop has been always kept

disconnected from the power line and ran with its internal batteries for all

the duration of the experiments.

The EEG has been recorded using a pre-wired electrode cap (see Figure

7.1(c)) equipped with 19 electrodes positioned in the standard locations de-

fined by the 10-20 international system (see Section 3.2.2), plus an electrode

used as ground (between Cz and Fz) and an electrode used as reference

(between Fz and Fp1-Fp2). Moreover EOG signals have been recorded by

means of two additional electrodes (see Figure 7.1(b)) positioned near to the

left eye of the subject. Before starting any acquisition session we ensured

that all electrodes had impedance values below 5KΩ, being this threshold

normally considered good for high-quality EEG recordings.

The BE Light amplifier applies a high-pass filtering at 0.1 Hz to all EEG

and EOG channels, so that DC components and slow drifts are removed.

Frequencies above 1 kHz are also removed by an anti-aliasing filter and a

digital low-pass filter is applied before the signal is downsampled to the de-

sired frequency. Finally a notch filter centered on 50 Hz has been applied in

order to remove the interference from the power line. A sampling frequency

of 512 Hz has been used for all the experiments, hence the resulting use-

ful band according to the specifications is 0.1-230 Hz. This band is much

wider compared to the interesting frequency band for motor imagery which

is typically bounded between 1 Hz and 30 Hz.

Signal acquisition is handled by the software provided with the ampli-

fier (Galileo), which sends the recorded data to our BCI application. This

communication is performed through a software pipe in batches of 62.5 ms,

with a delay that is low enough for real-time processing.

7.1.2 Subjects

Three healthy subjects participated to the BCI experiments performed for

this thesis. We considered only healthy people since the BCI system is still

in a prototypal phase and we did not want to involve people with disabili-

ties before assessing the actual performances on healthy subjects. However

several studies showed that performances of motor-imagery BCIs are compa-

rable with healthy and impaired subjects and in some cases [67] people with

severe motor disorders achieved better results compared to healthy subjects.

The participants are all students from Politecnico di Milano aged from 24

to 26. They are all male and right handed and none of them had previous

experiences with BCI systems before the starting of this thesis. A left-
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(a) EEG amplifier EBNeuro (b) Electrodes for EOG recordings

(c) Electrodes’ cap

Figure 7.1: Instrumentation employed for BCI experiments

handed subject has been excluded from experiments since our firsts offline

analyses revealed that he would not be able to achieve BCI control. We

refer to subjects with the first letter of their names, being P, T and F.

7.1.3 Initial sessions and offline analyses

The goal of initial sessions is to collect EEG data related to different motor-

imagery tasks in order to perform offline analyses and train the supervised

algorithms employed in the BCI system.

Protocol

Initial sessions have been performed with the three subjects on five different

days. On each day two different acquisition sessions have been performed

with a five minutes break in between. Each session is composed of seven

runs separated by a one minute break. Each run is in turn composed by

two sequences of 20 trials associated to different tasks. Hence a total of 560

trials per day has been considered, being 2800 the total number of trials

considered for each subject.
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Figure 7.2: Protocol for initial sessions

During a trial the subject is asked to perform a specific motor-imagery

task or to remain relaxed based on a visual stimulus displayed on the screen.

The stimuli considered and their corresponding tasks are the following:

1. left arrow : motor-imagery of left hand;

2. right arrow : motor-imagery of right hand;

3. up arrow : motor-imagery of both hands;

4. down arrow : motor-imagery of both feet;

5. R letter : resting condition;

Each stimulus is displayed continuously for 6 s and when this time is over

the screen remains blank for 1.5 s before the next stimulus appears. Be-

tween the two sequences there is a break of 4 s in which the screen is blank

and the subject may stretch or blink. Stimuli are randomized in order to

avoid adaption, but each stimulus is displayed exactly eight times per run.

Subjects were instructed to remain completely still and to avoid blinking,

jawing or producing other artifacts during the duration of a trial. Figure 7.2

shows a timing diagram of the BCI protocol employed for initial sessions.

Offline analyses

All data acquired during initial sessions have been used to perform offline

analyses. The goal of these analyses was to assess how EEG activity is

correlated with the different tasks and to identify the most discriminative

channels and the frequency bands for each subject. Offline analyses are
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based on the visual inspection of the EEG spectra and on the computation

of the r2 coefficient.

The statistical index r2, also known as coefficient of determination, as-

sumes real values between 0 and 1 and quantifies how much of the signal’s

variance can be explained by the fact that the signal was originated by dif-

ferent sources (in our case corresponding to the different tasks). With a

value of r2 close to 1 there is a very good discrimination, while r2 values

close to 0 are associated to sources that can be hardly distinguished. The

r2 coefficient is indeed computed as follows:

r2 =

∑M
i=1 Ni(µi − µ)2

∑M
i=1

∑Ni

j=1(yij − µ)2
(7.1)

where:

• M is the number of sources;

• Ni is the number of data associated to source i;

• µi is the expected value computed for all data belonging to source i;

• µ is the expected value computed globally for all data (independently

from the sources);

• yij is the datum j associated to the source i.

Hence the numerator is proportional to the distance between the expected

values for the different sources and the denominator is proportional to the

signal variance computed globally.

In these analyses the r2 coefficient has been computed comparing the

EEG spectra associated with each motor-imagery task with respect to the

spectra recorded in the resting condition. This information has been used to

design and parametrize the features employed in signal classification. Three

categories of plots have been generated during offline analyses:

1. plots displaying r2 values computed for different channels and different

frequency bands (Figure 7.3);

2. plots displaying how signal power and r2 values are distributed over

frequencies (Figures 7.4, 7.5 and 7.6);

3. plots displaying the topographical distribution of r2 at specific fre-

quency values (Figure 7.7).
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Offline analyses confirmed for all subjects the signals’ behavior expected

from the neurophysiological studies about motor imagery. Indeed, motor-

imagery tasks were found to be associated with de-synchronizations of the

mu and beta rhythms over the sensory-mothor cortex contralaterally to the

movement and in some cases with synchronizations of the same rhythms

ipsilaterally to the movement. As expected the mu rhythm is much stronger

compared to the beta rhythm and is associated with higher values of r2. The

motor imagery of both hands produced de-synchronizations on both sides

of the motor cortex and revealed good discrimination levels for all subjects.

The motor imagery of both feet, instead, produced different effects on

subjects P and F with respect to subject T . Indeed for subject T the spectra

associated with this task revealed strong synchronizations of sensory-motor

rhythms over the hands area (C3 and C4), while the same phenomenon

has not been observed for the other subjects (see Figure 7.6). Moreover

the signal on channel Cz (which is normally associated with the feet area)

showed low values of r2 for all subjects in the mu and beta frequency bands.

Even if similar discrimination patterns have been found for all subjects,

the EEG spectra and their corresponding r2 values change significantly from

subject to subject. In particular the spectra computed for subject P are

less affected by noise and reveal high r2 values (up to 0.6), while signals of

subjects T and F appear more noisy and associated with low values of r2

(typically less than 0.2).

The highest r2 values have been found in the frequency bands 8-12 Hz

and 18-22 Hz for all subjects, therefore these values have been taken as band

limits for computing features. Moreover mu and beta rhythms were mostly

located at the centers of these bands, being respectively 10 Hz for the mu

peak and 20 Hz for the beta peak.
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Figure 7.3: Values of r2 computed for subject P at different frequencies and on

different channels, comparing each motor-imagery task with the resting condition.
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Figure 7.4: Spectra computed for subject P for tasks left-hand and right-hand com-

pared to the resting condition
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Figure 7.5: Spectra computed for subject P for tasks both-hands and both-feet com-

pared to the resting condition
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(a) Left hand VS Rest

(b) Right hand VS Rest

(c) Both hands VS Rest

(d) Both feet VS Rest

Figure 7.7: Topography maps for the spatial distribution of r2. Values are computed

for subject P at the frequencies of the mu rhythm (10Hz) and beta rhythm (20Hz),

comparing each motor-imagery task with the resting condition
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7.1.4 BCI performance evaluation measures

To analyze the performance of a BCI system some evaluation criteria must

be applied. BCI performances can be evaluated in different ways according

to the control paradigm adopted (asynchronous, synchronized or self-paced),

the output control signal produced (continuous or discrete) and the target

application considered. This section presents the evaluation criteria adopted

in this work to assess the performances of the BCI system alone (the appli-

cation is not considered), while performances with the spelling application

are evaluated and discussed in Section 7.3. In our settings we have a syn-

chronized BCI control and a discrete control signal produced by means of

classification, hence the accuracy of the classification algorithm can be re-

garded as a performance measure for the BCI system.

The confusion matrix and the overall classification accuracy

For a multi-class classification problem the results are best described by

a confusion matrix. A confusion matrix is a square matrix in which rows

contain counts for the true classes and columns for the predicted classes.

Thus each element nij in the matrix indicate how many samples of class

i have been predicted as class j. Accordingly the diagonal elements nii

represent the number of correctly classified samples, while the off-diagonal

elements nij represent how many samples of class i have been incorrectly

classified in class j.

Since it is not easy to compare confusion matrices directly, more com-

pact measures have been introduced to evaluate classification performances

starting from the confusion matrix. The most widely used is the overall

classification accuracy (p0):

p0 =

∑M
i=1 nii

N
(7.2)

where M is the number of classes and N is the total number of samples:

N =

M
∑

i=1

M
∑

j=1

nij (7.3)

.

The problem with overall accuracy is that the off-diagonal values of

the confusion matrix are not considered. For example if true classes occur

with different frequencies, less frequent classes would account with smaller

weights in the final accuracy. Moreover this measure does not allow to

directly compare classifiers with different number of classes since the chance

accuracy level is 1/M .
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The Cohen’s Kappa coefficient

Another evaluation measure commonly used in BCI research is the Cohen’s

Kappa coefficient (k) [14]. The value of k is computed as follows:

k =
p0 − pe

1 − pe
(7.4)

, where p0 is called overall agreement and is computed as in 7.2, while pe is

the chance agreement and is computed from the confusion matrix as follows:

pe =

∑M
i=1

(

∑M
j=1 nji

∑M
j=1 nij

)

N2
(7.5)

, where
∑M

j=1 nji is the sum of the ith column and
∑M

j=1 nij is the sum of

the ith row of the confusion matrix.

The Kappa coefficient ranges from -1 to 1 and is equal to zero when the

probability of correct prediction is equal to the chance probability. There-

fore this coefficient can be used to measure performances of classifiers with

different number of classes and, since frequencies are normalized for each

class, class accuracies result to be correctly weighted. Finally, this is the

evaluation criterion used to assess the classification performances in BCI

competition III [9] and BCI competition IV .

Similarly, the specific accuracy for each class i can be computed from

the confusion matrix in this way:

pi =
2nii

∑N
j=1 nij +

∑N
j=1 nji

(7.6)

.

The information transfer rate

Since the final goal of every BCI system is to communicate the user’s intents,

as the number of possible choices increases measures of classification accu-

racy alone become insufficient. For communication systems the traditional

unit of measure is the amount of information transferred for a unit of time.

Therefore, in BCI systems, performances can be measured by the number

of bits transferred per trial. The information transfer rate is computed as

follows:

B = log2 M + P log2 P + (1 − P ) log2

(

1 − P

M − 1

)

(7.7)
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Figure 7.8: Information transfer rate for different number of classes

where M is the number of possible choices per trial (classes) and P is

the overall classification accuracy. Therefore the relationship between accu-

racy and rate of information transfer is not linear and possibly a classifier

with fewer classes, but higher accuracies, is better compared to a classifier

with more classes and lower accuracies. Figure 7.8 shows this relationship

considering different number of classes and different values of accuracies.

In this work BCI classification performances have been evaluated com-

puting the overall accuracy, the specific accuracy for each class, the Cohen’s

Kappa coefficient and the theoretical information transfer rate (in bits per

trial). Moreover the confusion matrices have been reported too, in order to

show how errors are distributed among classes.

7.1.5 Offline classification

Data acquired during initial sessions have been used also to estimate classifi-

cation performances offline, and then to train the classifier employed online.

This section deals with offline classification and presents the results obtained

applying all the algorithms described in Chapter 5.

In performing offline classification we adopted a 5-fold cross-validation

scheme in which, at each iteration, all data acquired in one day are used for
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testing and all remaining data are used for training. This choice is motivated

by the fact that we want to avoid training the model with data acquired in

the same day that is used for testing. Indeed signals recorded in exactly the

same settings are likely to be correlated and may introduce biases.

For all subjects, offline classification performances have been evaluated

considering both a four-class and a three-class classification problem, being

these the two options available for the spelling application designed. Dealing

with the four-class problem we considered one class for each motor-imagery

task (i.e., left hand, right hand, both hands and both feet).

The resting condition was not considered as a class for several reasons.

The main one is that EEG signals acquired in the resting condition revealed

to be associated with the highest variances and, including this class, clas-

sification performances degraded significantly. Moreover using the resting

condition as a class would preclude future developments in which this state

might be detected in order to pass from a synchronized to a self-paced con-

trol paradigm. Finally, even from a cognitively point of view, it is more

natural to associate each choice with a task performed actively by the user

rather than having a default choice when no task is performed.

Dealing with the three-class problem, instead, the three classes yielding

to the best classification performances have been selected. For all subjects

the best three classes resulted to be: left hand, right hand and both feet

motor imagery. According to the results obtained we evaluated the best

number of classes to be considered for each subject.

As expected from offline analyses, subject P is the one for which the

best classification performances have been reached. Considering four classes,

we obtained for subject P an overall accuracy of 0.848 ± 0.047, a Kappa

coefficient of 0.797 ± 0.063 and an information transfer rate of 1.158 ± 0.193

bits per trial. Table 7.1 shows the results obtained across the five validation

sets and provides the specific accuracies obtained for each of the four classes.

Looking at these values we can notice that class “both hands” is the one

with the lowest accuracy, while class “both feet” is the one which is best

discriminated from the others. Indeed the confusion matrix (see Table 7.2)

shows that both classes “left hand” and “right hand” are mainly confused

with class “both hands”. As a consequence, considering just three classes

and excluding the class “both hands”, classification performance improves,

reaching in this case an overall accuracy of 0.946 ± 0.032 (see Table 7.3).

However the information transfer rate does not increase significantly, since

the number of classes is lower. Therefore, looking at the BCI performances

alone, these two configurations can be regarded as equivalent for subject P.

Dealing with subjects T and F, instead, classification performances are
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Test date Bit-rate K Overall Left hand Right hand Both hands Both feet

20081217 0.942 0.726 0.795 0.750 0.840 0.711 0.899

20090225 1.210 0.818 0.864 0.800 0.927 0.776 0.959

20090304 0.926 0.720 0.790 0.774 0.820 0.698 0.865

20090311 1.308 0.848 0.886 0.832 0.943 0.785 0.982

20090318 1.403 0.875 0.906 0.893 0.922 0.831 0.978

Mean 1.158 0.797 0.848 0.810 0.890 0.760 0.937

Std dev 0.193 0.063 0.047 0.050 0.050 0.049 0.047

Table 7.1: Offline classification performances with four classes for subject P

Left hand Right hand Both hands Both feet Total

Left hand 457 5 90 8 560

Right hand 3 496 50 11 560

Both hands 86 36 432 6 560

Both feet 23 16 6 515 560

Total 569 553 578 540 2240

Table 7.2: Offline confusion matrix with four classes for subject P

Test date Bit-rate K Overall Left hand Right hand Both feet

20081217 1.128 0.888 0.926 0.912 0.931 0.935

20090225 1.277 0.933 0.955 0.952 0.950 0.964

20090304 0.999 0.844 0.896 0.904 0.914 0.871

20090311 1.399 0.964 0.976 0.978 0.969 0.982

20090318 1.418 0.969 0.979 0.996 0.969 0.973

Mean 1.244 0.920 0.946 0.948 0.947 0.945

Std dev 0.161 0.048 0.032 0.036 0.022 0.040

Table 7.3: Offline classification performances with the best three classes for subject P

Left hand Right hand Both feet Total

Left hand 532 15 13 560

Right hand 13 530 17 560

Both feet 17 15 528 560

Total 562 560 558 1680

Table 7.4: Offline confusion matrix with three classes for subject P
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Test date Bit-rate K Overall Left hand Right hand Both hands Both feet

20081210 0.354 0.440 0.580 0.515 0.563 0.347 0.869

20081211 0.377 0.455 0.592 0.535 0.599 0.469 0.808

20081218 0.386 0.461 0.596 0.491 0.591 0.407 0.879

20090225 0.288 0.396 0.547 0.453 0.513 0.415 0.832

20090304 0.358 0.443 0.583 0.507 0.565 0.416 0.854

Mean 0.353 0.439 0.580 0.500 0.566 0.411 0.848

Std dev 0.034 0.023 0.017 0.028 0.030 0.039 0.026

Table 7.5: Offline classification performances with four classes for subject T

Left hand Right hand Both hands Both feet Total

Left hand 282 87 175 16 560

Right hand 74 334 126 26 560

Both hands 186 134 229 11 560

Both feet 19 72 16 453 560

Total 561 627 546 506 2240

Table 7.6: Offline confusion matrix with four classes for subject T

Test date Bit-rate K Overall Left hand Right hand Both feet

20081210 0.457 0.585 0.723 0.660 0.672 0.833

20081211 0.531 0.629 0.753 0.780 0.657 0.820

20081218 0.479 0.598 0.732 0.682 0.658 0.847

20090225 0.464 0.589 0.726 0.704 0.659 0.833

20090304 0.493 0.607 0.738 0.714 0.667 0.839

Mean 0.485 0.602 0.734 0.708 0.663 0.834

Std dev 0.026 0.016 0.011 0.041 0.006 0.009

Table 7.7: Offline classification performances with three classes for subject T

Left hand Right hand Both feet Total

Left hand 398 131 31 560

Right hand 136 383 41 560

Both hands 25 82 453 560

Total 559 596 525 1680

Table 7.8: Offline confusion matrix with three classes for subject T
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Test date Bit-rate K Overall Left hand Right hand Both hands Both feet

20081216 0.229 0.351 0.513 0.418 0.513 0.284 0.742

20090225 0.318 0.417 0.563 0.518 0.514 0.382 0.830

20090304 0.112 0.241 0.431 0.373 0.355 0.369 0.644

20090305 0.161 0.292 0.469 0.430 0.385 0.338 0.720

20090318 0.155 0.286 0.464 0.319 0.483 0.336 0.745

Mean 0.195 0.317 0.488 0.412 0.450 0.342 0.736

Std dev 0.072 0.061 0.046 0.066 0.067 0.034 0.059

Table 7.9: Offline classification performances with four classes for subject F

Left hand Right hand Both hands Both feet Total

Left hand 232 122 147 59 560

Right hand 112 259 149 40 560

Both hands 168 155 188 49 560

Both feet 55 46 45 414 560

Total 567 582 529 562 2240

Table 7.10: Offline confusion matrix with four classes for subject F

Test date Bit-rate K Overall Left hand Right hand Both feet

20081216 0.293 0.469 0.646 0.518 0.602 0.787

20090225 0.547 0.638 0.759 0.682 0.722 0.874

20090304 0.135 0.317 0.545 0.480 0.493 0.676

20090305 0.221 0.406 0.604 0.541 0.537 0.731

20090318 0.277 0.455 0.637 0.557 0.585 0.790

Mean 0.295 0.457 0.638 0.556 0.588 0.772

Std dev 0.138 0.105 0.070 0.068 0.077 0.066

Table 7.11: Offline classification performances with three classes for subject F

Left hand Right hand Both feet Total

Left hand 310 184 66 560

Right hand 173 335 52 560

Both hands 75 58 427 560

Total 558 577 545 1680

Table 7.12: Offline confusion matrix with three classes for subject F
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(a) Feedback during the trial (b) Classification result at the end of the

trial

Figure 7.9: Subject performing an online BCI session with feedback

much lower compared to subject P. Indeed, with four classes, we obtained an

overall classification accuracy equal to 0.580 ±0.17 for subject T and equal

to 0.488 ± 0.46 for subject F (see Tables 7.5 and 7.9). These results reveal

that BCI control based on motor-imagery is characterized by a strong inter-

subject variability. This variability has been documented in many studies

available in literature [61] and it is one of the most critical issue in this area

of BCI research.

However, looking at the confusion matrix of subject T reported in Ta-

ble 7.6 we can notice that even in this case the class “both hands” is the

most problematic. Excluding this class, performance improves significantly

reaching for subject T an overall classification accuracy of 0.734 ± 0.011.

Moreover, comparing bit-rate values and Kappa coefficients in the two set-

tings there are no doubts that three classes are better than four for subject

T (see Tables 7.5 and 7.7).

Similar considerations can be made also for subject F. However, even

with three classes, the overall classification accuracy remains rather low

(see Table 7.11). A two-class approach would be instead preferred for this

subject, but this option has not been considered in the spelling application

designed for this thesis.

7.1.6 Online classification and feedback

This section reports the classification performances obtained testing the BCI

system online with the three subjects. In these tests we adopted the same

protocol used for initial sessions, but considering only the best subset of

classes for each subject according to the performances obtained offline. The

classifier has been trained with the data acquired during initial sessions and
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predicted classes were displayed to the user at the end of each trial (see

Figure 7.9(b)). Moreover a feedback signal has been provided during the

trials. As discussed in Section 5.4 the feedback consists in two green bars

at the left and right side of the screen whose length is proportional to the

power of the EEG signal at the frequency of the mu peak, estimated on

channels C3 (left side) and C4 (right side) (see Figure 7.9(a)). Online tests

have been performed with four classes for subject P and with three classes

for subjects T and F. The results obtained are reported in Tables 7.13, 7.14

and 7.15.

We can observe that the first session of each subject is always associated

with lower performances compared to the other sessions. This is probably

because in that session subjects experienced the feedback signal for the

first time and they needed to get used with it. For subjects P and T the

average classification accuracy obtained online is slightly lower compared

to the results obtained offline (mainly because of the first date), while for

subject F the performances improved. From these tests it is not clear which

is the actual effect of feedback on performances, anyhow it seems that at

least subject F got benefits from it.

Test date Bit-rate K Overall Left hand Right hand Both hands Both feet

20090423 0.785 0.664 0.748 0.717 0.787 0.658 0.826

20090427 1.100 0.783 0.837 0.796 0.850 0.750 0.945

20090519 1.040 0.762 0.821 0.750 0.860 0.756 0.919

Mean 0.975 0.736 0.802 0.754 0.832 0.721 0.897

Std dev 0.137 0.052 0.039 0.032 0.032 0.045 0.051

Table 7.13: Online classification performances with four classes for subject P

Test date Bit-rate K Overall Left hand Right hand Both feet

20090423 0.376 0.531 0.688 0.673 0.607 0.791

20090427 0.547 0.638 0.759 0.628 0.722 0.892

20090603 0.464 0.589 0.726 0.688 0.599 0.896

Mean 0.462 0.586 0.724 0.663 0.643 0.860

Std dev 0.070 0.044 0.029 0.025 0.056 0.049

Table 7.14: Online classification performances with three classes for subject T
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Test date Bit-rate K Overall Left hand Right hand Both feet

20090423 0.261 0.442 0.628 0.574 0.706 0.603

20090428 0.464 0.589 0.726 0.667 0.721 0.791

20090505 0.364 0.522 0.682 0.667 0.704 0.673

Mean 0.363 0.518 0.679 0.636 0.710 0.689

Std dev 0.083 0.060 0.040 0.044 0.008 0.078

Table 7.15: Online classification performances with three classes for subject F

7.2 Testing the speller interface

In order to evaluate the expected performances of the BCI spelling appli-

cation, a simulator program has been implemented. The main reason for

performing simulations is that BCI experiments are very time consuming

and wearing for the participants. Moreover since different versions of the

speller interface have been designed we wanted to assess the best configura-

tion for each subject before performing online experiments.

In the first part of this section the simulator program is first described

in details. Subsequently some general considerations about the main factors

affecting the system performances are provided. Finally, the results for the

simulations with the three subjects are provided and briefly discussed.

7.2.1 Interface simulator

The interface simulator takes as inputs a text to be composed, a speller

interface model and a confusion matrix. The program simulates the compo-

sition of the given text performing target selections on the specified interface

model in a way that is similar to what a real user would do. Errors that

may be introduced by the BCI are simulated too, and the confusion matrix

is used to compute the probability of selecting each target given the target

that was planned by the simulator.

The program reproduces only a simplified version of the real user behav-

ior. In particular these simplifications have been considered:

1. The simulator is “greedy”: when no errors occur, it always plans to

get the next symbol to be entered or the proposed word prediction if

available;

2. The simulator always corrects errors as soon as they occur but no

logic has been implemented for choosing the most convenient behavior

according to a specific situation. For example if a series of wrong

symbols have been entered by mistake the most convenient behavior
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would be to activate the “delete word” function, but this opportunity

is not seen by the predictor, which would plan a series of “undo”

instead.

The functioning of the simulator is based on a stack. The stack con-

tains the interface transitions1 planned by the simulator. When a planned

transition is successfully taken it is popped from the stack. If the stack

is empty new transitions are planned according to the current composition

context and to the current interface state. The simulation terminates when

the composition of the input text is completed2. The main reason for hav-

ing a stack is that more than one transition is planned at a time and, after

an error correction, the planned flow of transitions needs to be recovered.

Therefore the stack keeps in memory what the simulator was doing before

being interrupted by an error.

The main logic implemented by the simulator is shown in the diagram

in Figure 7.10, while Figure 7.11 shows how new transitions are planned

according to the current composition context and to the current interface

state.

Finally, computing the path to a given transition requires the simulator

to perform a recursive search starting from the current interface state. For

this purpose a simple breadth-first search algorithm has been implemented.

7.2.2 Impact of classification accuracy on performances

In order to assess how classification accuracy impacts on system’s perfor-

mances the composition of a simple phrase has been simulated with different

accuracy levels. The phrase chosen for all simulations performed and used

also for online tests is: “what a wonderful day”.

For these simulations we considered normalized confusion matrices gener-

ated with increasing levels of overall accuracy. Balanced matrices have been

considered i.e., the off-diagonal elements of each row are computed evenly

distributing the error probability over all classes. The interface model con-

sidered is the one having four targets and four classes and predictive capabil-

ities have been enabled too. The speller’s performances have been measured

counting the total number of interface transitions required to complete the

task.

1Recall from Section 6.1.4 that a state is identified by a set of targets and each target

is associated to a transition pointing to a new interface state.
2In case the “quit” function is activated by mistake, the program terminates before

completing the task and the simulation is marked as unsuccessful.
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Figure 7.10: Overall logic implemented by the interface simulator
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Figure 7.12: Impact of classification accuracy on performances. Each sample indicates

the average number of transitions (and the corresponding estimated time) obtained

simulating the task 10 times with different randomization seeds. The task considered

is the composition of the phrase “what a wonderful day”. The speller interface used is

the one having four targets and four classes available.

Figure 7.12 shows the results of these simulations. We can notice that

the number of transitions required increases exponentially as the accuracy

level decreases, being 25 the minimum number of transitions required with

a 100% accuracy and about 80 the total transitions required with a 70%

accuracy. This exponential trend is explained by the fact that each error

needs to be corrected with new transitions that in turn may be sources of

other errors.

7.2.3 Impact of language predictions on performances

In order to assess how language predictions impact on system’s performances

the composition of the same phrase was simulated enabling and disabling the

predictive capabilities. For these simulations we used the interface model

having four targets and four classes and the confusion matrix of subject P

reported in Table 7.2. The prediction modes considered are the following:

• Word and letter : All predictive capabilities are available in the inter-

face. Hence word suggestions are provided and letters are activated

according to their probability in the composition context.

• Only word : Only word prediction is available.

• Only letter : Word predictions are not available while improbable let-
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Pred. mode Est. time Total Errors Shortcuts

Word and letter 6:09 41.18 ± 7.84 7.18 ± 3.32 2.00 ± 0

Only word 6:27 43.03 ± 7.70 7.52 ± 3.55 0

Only letter 10:38 70.92 ± 11.09 13.06 ± 4.84 12.00 ± 0

None 12:56 86.26 ± 10.62 15.70 ± 5.84 0

Table 7.16: Simulated performances of the spelling application with different prediction

modes. The task considered is the composition of the phrase “what a wonderful day”.

All values are averaged over 50 runs performed with different randomization seeds.

ters are disabled in the interface.

• None: None of the predictive capabilities is available in the interface.

Table 7.16 show the results obtained with these simulations. For each case

considered, the estimated time for the task, the total number of transitions,

the number of errors and the total number of shortcuts taken are reported.

A shortcut is taken when one or more transitions are skipped because of the

presence of disabled symbols in one target.

The results obtained reveal that word prediction impacts significantly on

the overall performances, being the estimated time with this feature enabled

about half of time required without word prediction. Indeed all the words

in the phrase “what a wonderful day”, except for the article “a”, have been

completed with a word suggestion after the composition of the firsts one

or two letters. The impact of letter prediction on performances is instead

related to the presence of word prediction. Indeed the probability of having

a shortcut increases with the number of letters entered for a given word.

Therefore if word prediction is disabled and all letters need to be entered

one at a time the impact of letter prediction is more evident. Table 7.16

show that when word prediction is enabled only two shortcuts are taken for

the considered task, while disabling word prediction twelve shortcuts are

taken yielding to a significant performance improvement with respect to the

base case.

7.2.4 Interface simulations targeted on subjects

In order to assess if the BCI performances obtained with the three subjects

were sufficient for an effective use of the spelling application, simulations

targeted on subjects have been performed too. For this purpose the compo-

sition of the phrase “what a wonderful day” has been simulated using the

confusion matrices computed offline for each subject and considering the

three version of the speller interface. Tables 7.17, 7.18 and 7.19 show the
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result obtained (the column “completed” indicates how many simulations

terminated successfully, in the other cases a wrong selection of the “quit”

target occurred).

A first observation valid for all subjects is that when only three classes

are considered the interface with four targets (using the two-step selection)

yields always to worse performances compared to the interface with three

targets. This is because the interface with three targets requires less transi-

tions to complete the given task and more shortcuts are taken compared to

the interface with four targets.

Simulations on subject P revealed good results with both three and four

classes considering respectively three and four targets in the user interface.

Even if the three-class solution was associated to an higher bit-rate for this

subject, simulations show that the option with four classes yields to slightly

better results with the spelling application.

Dealing with subject T, instead, the solution with three classes and three

targets is clearly the best one among the three. This is not surprising since

the bit-rate achieved with three classes was significantly higher for this sub-

ject. In this configuration the estimated error rate is about 25% and the

expected time to complete the task is around 13 minutes. Simulations on

subject F reveal that this user might have some difficulties to use the spelling

application effectively. Indeed in the best configuration, the expected time

to complete the task is around 27 minutes. However the latest BCI sessions

performed with feedback revealed a trend of performance improvement for

this subject.

Finally we simulated the task using the best interface configuration for

each subject and employing the confusion matrices obtained online in the

latest BCI session performed (with feedback). The results of these simula-

tions are reported in Table 7.20. Comparing these values with the results

obtained before we note a slight performance degradation for subjects P and

T, but a performance improvement for subject F.

7.3 Testing the whole system

Finally, the whole BCI spelling application has been tested online. A test

session consisted in performing seven repetitions of the same task, that is

again the composition of the phrase “what a wonderful day”. Subject P

performed three test sessions in different dates, while for subjects T and F

a single test session is available. For each repetition the following values

have been registered: the total time required to complete the task, the total

number of interface transitions performed and the number of errors occurred.
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Interface version Est. time Total Errors Shortcuts Completed

Four targets (four cls.) 6:09 41.18 ± 7.84 7.18 ± 3.32 2.06 ± 0.2 50 / 50

Three targets 6:21 42.36 ± 4.25 2.9 ± 1.95 5.01 ± 0.2 50 / 50

Four targets (three cls.) 11:44 56.26 ± 6.46 3.0 ± 2.02 2.06 ± 0.2 50 / 50

Table 7.17: Simulated performances of the spelling application for subject P with

different versions of the interface. The task considered is the composition of the phrase

“what a wonderful day”. All values are averaged over the number of completed runs.

Interface version Est. time Total Errors Shortcuts Completed

Four targets (four cls.) 22:03 147.15 ± 55.81 53.1 ± 23.1 2.45 ± 1.06 40 / 50

Three targets 13:12 88.78 ± 17.78 22.56 ± 7.50 5.48 ± 0.76 50 / 50

Four targets (three cls.) 21:12 105.54 ± 27.74 16.80 ± 7.53 2.44 ± 0.70 50 / 50

Table 7.18: Simulated performances of the spelling application for subject T with

different versions of the interface. The task considered is the composition of the phrase

“what a wonderful day”. All values are averaged over the number of completed runs.

Interface version Est. time Total Errors Shortcuts Completed

Four targets (four cls.) 48:27 323.50 ± 139.8 131.50 ± 60.67 2.22 ± 0.43 18 / 50

Three targets 27:20 182.58 ± 48.51 64.74 ± 21.11 5.96 ± 1.26 50 / 50

Four targets (three cls.) 39:00 202.10 ± 65.16 48.47 ± 19.94 2.70 ± 1.13 38 / 50

Table 7.19: Simulated performances of the spelling application for subject F with

different versions of the interface. The task considered is the composition of the phrase

“what a wonderful day”. All values are averaged over the number of completed runs.

Subject Est. time Total Errors Shortcuts Completed

P 6:36 43.94 ± 10.43 8.74 ± 4.35 2 ± 0.00 50 / 50

T 15:00 100.22 ± 25.99 26.90 ± 10.82 6.18 ± 1.87 50 / 50

F 24:00 159.68 ± 77.96 55.16 ± 34.82 5.60 ± 1.08 50 / 50

Table 7.20: Simulated performances of the spelling application for the three subjects

using their best interface configuration and the confusion matrices obtained in the last

online session. The task considered is the composition of the phrase “what a wonderful

day”. All values are averaged over the number of completed runs.
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Subject P used the speller interface with four targets and four classes, while

subjects T and F used the speller interface with three targets and three

classes. The results obtained are reported in Tables 7.21,7.22 and 7.23.

The average number of interface transitions required by subject P to

complete the task is slightly higher compared to the simulations. This could

be the effect of adopting a new user interface, which is substantially dif-

ferent with respect to the ones used during initial sessions and feedback

sessions. There is also a significative variance in the performances regis-

tered in the three sessions, revealing that BCI control is strongly related to

the psychophysical conditions met by the subject. In the best case subject

P succeeded to complete the task in 5 minutes and 24 seconds, while in the

worst case it took 9 minutes and 27 seconds. The average time required for

subject P is about 7 minutes, corresponding to an average communication

rate of 3 char/min.

Subjects T and F, instead, obtained online performances that are signif-

icantly better compared to the simulations. Such results show that, as the

number of feedback sessions increases, a good BCI control can be achieved

by these subject too. Subject T took on average less than 11 minutes to com-

plete the task, corresponding to a communication rate of about 2 char/min.

Subject F, instead, required on average 7 minutes and 40 seconds to com-

plete the task, corresponding to a communication rate of 2.7 char/min.

7.4 Discussion

The results obtained with the three subjects are satisfactory and inline with

the latest works about BCI spellers reported in literature. The “Thought

Translation Device” [5] is one of the firsts spellers that have been developed

(1999). It employed slow cortical potentials to generate control signals and

achieved a spelling rate of about 0.5 char/min, performing binary decisions

to select letters. The same interface was used also with a motor-imagery

BCI paradigm achieving a spelling rate of about 1 char/min with one sub-

ject [43]. In 2003 the group led by Gert Pfurtscheller developed the “Virtual

Keyboard” [45], a spelling application controlled by a three-class BCI based

on motor imagery. Two out of three BCI-trained users were able to oper-

ate the device at a spelling speed of respectively 2.35 char/min and 1.62

char/min.

There are also BCI spelling devices based on event-related potentials, be-

ing P300 the most prominent approach employed. Compared to motor im-

agery, the P300 paradigm generates only discrete control signals and can be

used effectively only with subjects that are able to remain concentrated for
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Session 1 Session 2 Session 3

Run Time Total Errors Time Total Errors Time Total Errors

1 5:33 37 7 7:12 48 11 8:06 54 13

2 8:33 57 14 7:03 47 10 6:45 45 7

3 6:27 43 7 5:51 39 8 8:33 57 14

4 8:06 54 13 7:48 52 12 8:06 54 12

5 7:12 48 11 6:45 45 7 9:27 63 15

6 9:09 61 16 6:18 42 7 6:36 44 7

7 6:27 43 7 6:18 42 6 5:24 36 6

Mean 7:21 49 10.7 6:45 45 8.7 7:33 50.42 10.57

Std dev 1:18 8.6 3.7 0:40 4.4 2.2 1:22 9.18 3.8

Table 7.21: Online performances of the spelling application for subject P. The task

considered is the composition of the phrase “what a wonderful day”.

Run Time Total Errors

1 11:33 77 16

2 09:45 65 13

3 13:24 96 26

4 09:36 64 13

5 12:27 83 18

6 08:42 58 9

7 10:12 68 14

Mean 10:48 73.00 15.57

Std dev 01:42 13.16 5.38

Table 7.22: Online performances of the spelling application for subject T. The task

considered is the composition of the phrase “what a wonderful day”.

Run Time Total Errors

1 6:45 45 4

2 9:09 61 10

3 6:54 46 5

4 6:27 43 3

5 7:03 47 4

6 6:27 43 3

7 11:15 75 17

Mean 7:42 51.42 6.57

Std dev 1:48 12.19 5.20

Table 7.23: Online performances of the spelling application for subject F. The task

considered is the composition of the phrase “what a wonderful day”.
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a significant amount of time without being disturbed by repetitive external

stimuli. Several studies suggest that high spelling rates can be achieved with

this approach, however many stimulus repetitions are normally required for

an accurate P300 detection. In recent works reported in literature [16] [62]

a spelling speed varying from 4 char/min to 6 char/min has been obtained

with P300 spellers.

Comparing our results with the ones discussed so far, we must consider

that none of these systems adopted language predictions, while our perfor-

mances are strongly improved thanks to the presence of words suggestions.

On the other side our spelling application provides also a number of auxiliary

functions that normally are not provided by other BCI devices.

An example of a BCI spelling application adopting language modeling

techniques is the “Hex-o-Spell” [7]. In this application letters are displayed

in hexagons and selections are performed rotating and scaling an arrow by

means of two different motor-imagery tasks. A language model is used for

controlling the arrangement of symbols into the hexagons in order to speedup

the selection process. This application achieved a spelling speed between

2.3 and 5 char/min for one subject and between 4.6 and 7.6 char/min for

another subject. These are probably the best results obtained so far with

BCI spellers based on motor imagery. The performances achieved with our

first prototype of the spelling application are comparable with these results

and we believe that performing more BCI experiments further improvements

are still possible.
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Chapter 8

Conclusions and future work

“The best way to predict the future is to invent it.”

Alan Key

The objective of this thesis was to implement a BCI spelling application

based on motor imagery for people with severe motor impairments, adopting

natural language processing techniques to improve the overall communica-

tion rate of the system. The work started with a deep literature review on

both the research areas of brain-computer interfacing and natural language

processing, along with a study of all the problematics related to assistive

communication devices.

In the first period we performed a number of BCI experiments in order

to achieve a clear understanding about the effects of the neurophysiological

phenomena associated to motor imagery on EEG signals. These experiments

lasted several months since we needed to collect a sufficient dataset of EEG

signals and we had to become confident with the instrumentation and the

software used for BCI experiments. Indeed this thesis was the first work

about motor imagery to be developed at the AirLab of Politecnico di Milano.

When enough data became available we started to perform offline anal-

yses and to design the BCI pipeline for processing EEG signals. In its final

version the BCI module performs spatial filtering (with Large Laplacians),

spectral estimation (with the Burg’s algorithm), feature extraction and clas-

sification. New features have been designed in the frequency domain and a

genetic algorithm has been employed to select the best subset of features for

each subject. Selected features have been projected in a lower dimensional

space using Fisher’s discriminant analysis and classified by means of linear

discriminant functions. BCI classification performances have been evaluated

on three different subjects first offline and then online.
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At the same time we started to design the speller interface, considering

different strategies to exploit redundancies in natural language. We pro-

posed two alternative approaches to arrange symbols in the interface (static

and dynamic) and we finally opted for a static interface with the possibility

of disabling improbable symbols to speedup the selection process. Moreover

a formalized model to define speller’s interfaces has been proposed and three

different interface versions have been designed and implemented.

In order to provide the speller with predictive capabilities a statistical

language model has been generated starting from a partition of the british

national corpus. The language model employed is a Katz backoff N-gram

model that is evaluated online to compute words’ and letters’ probabilities.

Speller’s performances have been evaluated with a simulator program

designed to reproduce the composition of a text similarly to how a real

user would do. The simulator has been used to assess the impact of clas-

sification accuracy and language prediction on the performances of spelling

application. Moreover the best interface configuration has been selected for

each subject employing the confusion matrices obtained during offline clas-

sification. Finally online tests with the BCI spelling application have been

performed.

The results obtained are very satisfactory and comparable with the lat-

est works about BCI spellers reported in literature [8]. With subject P we

obtained high classification accuracies both offline and online, considering

both the four-class and the three-class problem. This subject was able to

use the spelling application to compose simple sentences and the overall

communication rate achieved is about 3 char/min. With subject T and F,

instead, we started with lower offline classification accuracies, but signifi-

cant improvements have been obtained as the number of feedback sessions

increased. Subject T and F achieved respectively an average communication

rate of 2 char/min and 2.7 char/min.

A significant performance variability has been observed across different

acquisition sessions and different subjects. The problem of variability is one

of the most challenging issues in BCI research, especially dealing with the

paradigm of motor imagery. This is because the neurophysiological phe-

nomena considered are self-induced and each subject has its own strategy

to perform motor imagery. Even assuming the same mental strategy the

response of sensory-motor rhythms varies significantly from subject to sub-

ject and it is strongly affected by the psychophysical conditions of the users.

There is also a population of subjects (estimated to be about the 20% of

the total) for which brain activation patterns are too weak to be used for

BCI control [52]. However several studies proved that performing an ade-
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quate number of training sessions with feedback is essential to improve the

performances of BCI systems based motor imagery. An improvement trend

has been observed in our tests too (especially for subjects T and F) and

we believe that with more feedback sessions even better results could be

achieved.

Dealing with the BCI module there is certainly space for further im-

provements. Indeed a number of algorithms are available in literature to

cope with the problem of variability and the most promising approach is

to use features in the spatial domain, specifically the method of Common

Spatial Patterns (CSP). This technique has been adopted with success in

several recent works [63] [50] and resulted to be one of the best performing

technique for motor imagery. Another option could be to enhance the gener-

alization capabilities of the classifier. For this purpose regularized Support

Vector Machines (C-SVM) may be employed.

Dealing with the speller interface alternative symbol arrangements may

be investigated in order to speedup the selection process and to improve

the overall communication rate. For example, symbols may be re-arranged

in order to maximize the number of shortcuts, while keeping the interface

static and intuitive. Another possibility could be to introduce a bias in the

classifier based on the probabilities of the symbols contained in each target.

Therefore, dealing with the speller interface, new ways for exploiting lan-

guage predictions should be investigated, aiming to reduce the total number

of selections required by the speller interface.

Finally, the prediction module might be improved too. In order to in-

crease the accuracy of language predictions, customized language models

may be generated starting from subject-specific training texts. A simplified

language syntax could be considered too, for example discarding articles,

prepositions or any other language token that is not essential to grasp the

general meaning of the message to convey.

With this thesis we developed an original BCI spelling application based

on motor imagery. We proved that combining state-of-the-art algorithms

for signal processing and pattern classification with novel EEG features and

NLP techniques, good levels of communication rates could be achieved. This

work gives a contribution in the research around brain-computer interfaces

and assistive communication devices. These research fields are growing fast

in the latest years and may have a strong impact on the quality of life of a

number of impaired people relying only on these technologies to communi-

cate.
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