
POLITECNICO DI MILANO
Corso di Laurea in Ingegneria Informatica
Dipartimento di Elettronica e Informazione

AI & R Lab
Laboratorio di Intelligenza Artificiale
e Robotica del Politecnico di Milano

Template based paper like
reconstruction when the edges

are straight

Tutor: Ing. Pier Luigi Taddei

Elaborato di:
Pamela Gotti, mat. 708212

Anno Accademico 2007-2008

1

Abstract
In this document we present an algorithm for the monocular tem-

plate paper-like surface reconstruction, for which the internal camera
parameters are known.

We assume that the surface has two opposite straight edges: in
this way the problem can be solved exploiting isometries that map the
template to a developable 3D surface. In order to solve the problem, a
set of point correspondences between the template and the perspective
image is known.

The proposed methodology is based on the a least square min-
imization of an energy function (in the form of a sum of squared
terms) that considers as error terms the reprojection error and the
metric constraints. Moreover we make use of a smoother: the paper is
modeled with a triangular mesh whose vertex represent the unknown
parameters.

Introduction
Aim of this project is the implementation of an error function whose mini-
mization allows the reconstruction of a deformed paper like surface.

While the problem is ill-posed in the general case, it is possible to demon-
strate that the reconstruction problem can be simplified considering those
isometries that map the template to a developable surface with two opposite
edges constrained to remain straight[1] (see Figure 1).

Figure 1: Two examples of paper deformations. Left: a generic isometry.
Right: an isometry in which two opposite edges remains straight (in partic-
ular all the rulings are parallel).

This surface can be obtained by a deformation, corresponding to bending
a rectangular piece of paper by moving two opposite edges and constraining
these to remain straight.

2

To solve this problem, the image template (2D image in real dimension
of the paper), the perspective image (the 2D image of the deformed paper),
a set of points’ correspondences between the two images and the camera
calibration matrix are given.

Under these constraints, the problem can be formulated as shown in Fig-
ure 2.

Figure 2: Formulation of the problem

Image θ is the template image (from now on, this image will be called θ
image). The template represents the projection on the 2D space of the same
paper in the 3D space, represented by image Θ (from now on, Θ image).

Γ : R2− > R3 is the function that transforms each point of θ into a point
of Θ. Γ is unknown: in the following section it will be demonstrated that
this is the objective function of the minimization.

S:R3− > R2 is the camera calibration matrix that maps the 3D object Θ
into the image I.

The known points’ correspondences are the one on θ and I images, while
points on Θ are unknown.

The following sections will describe how the error function to be min-
imized is computed; in particular, this document is organized as follows:
Section 1 explains how the error function is derived; Section 2 contains the
documentation of the matlab function which computes the error; Section 3

3

explains how all the project files interact; Section 4 shows an example of
minimization and finally Section 5 presents the conclusion and the future
works.

4

1 Error contributions

The energy/error expression consists of the following terms:

• reprojection error: this is the euclidean distance between the known
points on I and the projection on I of the known points on θ image

• smoothness error: in the construction of Θ the edges not constrained
to remain parallel must be as smooth as possible; moreover these
terms controls the mesh parameters where there are not correspondence
points: this means that the triangles that do not have any correspon-
dence point are adjusted to mantain a smooth surface. This is useful
when part of the paper texture is occluded (by an hand, for example)

• lower edge length preservation: in the construction of Θ the lower edge
has the same length of the edge of θ

• upper edge length preservation: in the construction of Θ the upper
edge has the same length of the edge of θ

• height preservation: in the construction of Θ the template height must
be maintained; this error is computed on each triangle of the mesh

Under the hypothesis that the two straight edges are vertical, exploiting the
previous explained terms, Γ represents an isometry. Each error contribute is
used in a non-linear least-square minimization, which in this context is used
to compute the approximation of Θ.

In the following subsection, before describing the error contributions, two
important issues are faced: the expression of Γ and the correspondence be-
tween points on θ and Θ.

1.1 The objective function

Since the camera calibration matrix is known, the only unknown function
remains Γ: minimizing the error function it is possible to improve only Γ,
such that Θ is the most realistic as possible and its projection on the 2D
plane via S gives the minimum reprojection error. So, Γ is the objective
function of the minimization.

To facilitate the error computation, Γ is parametrized using the vertices
of the triangular mesh. Consider Figure 3: left image shows the template
is represented, on the right it is shown a possible approximation of the 3D
paper.

5

Figure 3: The objective function as a correspondence between edges points

The two edges of the paper can be subdivided into segments delimitated
by n points: Γ represents a mapping of these template points to their re-
spective 3D points. The more the number of points in the two edges, the
smoother is the approximation.

In particular, through the minimization, the positions of the points in the
3D space are adjusted to find the solution that best approximates the real
paper pose.

1.2 Barycentric coordinates of template points

To evaluate the reprojection error, it is necessary to interpolate points on the
template surface, since only the correspondence of the vertex are known.

We exploit the concept of barycentric coordinates.

Figure 4: A point p in a triangle can be located through its barycentric
coordinates

Considering Figure 4, it exists only one triple
(

a1 a2 a3

)
such that

p = a1 ∗ v1 + a2 ∗ v2 + a3 ∗ v3

and

a1 + a2 + a3 = 1

6

(
a1 a2 a3

)
are the barycentric coordinates of point p.

Exploiting the parametrization of Γ, it is possible to easily subdivide the
surface of θ and Θ images into triangles (in this way, the broken line resulting
from the union of the triangle vertices is sufficient to describe the form of θ
and Θ): two correspondent points P and P’ will have the same barycentric
coordinates (see Figure 5).

Figure 5: Paper surface is subdivided into triangles; two correspondent points
are identified by their common barycentric coordinates

P = a1 ∗ v(7) + a2 ∗ v(8) + a3 ∗ v(9)

P ′ = a1 ∗ Γ(v(7)) + a2 ∗ Γ(v(8)) + a3 ∗ Γ(v(9))

To calculate the barycentric coordinates of point P, it is possible to observe
that the following information are known:

• points on θ image

• points representing the broken line on Θ (Γ is unknown but we have
an approximation of it that has to be minimized with respect to the
error)

So it is necessary to flatten the 3D shape onto the template reference system
(this transformation keeps the triangles length fixed in order to maintain
the surface metric). This can be easily done, since the template and its
3D shape have the same dimensions. The height of the template is known,
so, referring to Figure 5, it is possible to position point 2 on coordinate (0,
0) and point 1 on coordinate (0, H). To locate point 4, it is sufficient to
calculate the distance d between points 2 and 4 in Θ: 4 will have coordinate
point2 + (d, 0) = (0, 0) + (d, 0) = (d, 0), and so on for all the other points.

7

Once the broken line points on θ are known, it is possible to find the
triangle each point belong to and its barycentric coordinates; this can be
done observing that (always considering Figure 5):{ xP = a1 ∗ x7 + a2 ∗ x8 + a3 ∗ x9

yP = a1 ∗ y7 + a2 ∗ y8 + a3 ∗ y9

1 = a1 + a2 + a3

=>

 xP

yP

1

 =

 x7 x8 x9

y7 y8 y9

1 1 1

 ∗

 a1

a2

a3


{ a1 = x8∗y9−x8∗yP +x9∗yP−y8∗x9+y8∗xP−y9∗xP

y8∗x7−y9∗x7+y9∗x8−y7∗x8+y7∗x9−y8∗x9

a2 = x7∗yP−x7∗y9+x9∗y7−yP ∗x9+y9∗xP−y7∗xP

y8∗x7−y9∗x7+y9∗x8−y7∗x8+y7∗x9−y8∗x9

a3 = x7∗y8−x7∗yP +x8∗yP−y7∗x8+y7∗xP−y8∗xP

y8∗x7−y9∗x7+y9∗x8−y7∗x8+y7∗x9−y8∗x9

Solving the linear system it is possible to find the barycentric coordinates of
the point respect to one triangle; so, for each point this system is solved for
each triangle: if all the barycentric coordinates for point P and triangle T
are ≥ 0 the point belongs to that triangle.

1.3 Reprojection error

The reprojection error takes into account the correspondences between points
on θ and I. In particular, it represents the distance between points on I and
the projection on I of Γ points via S. This error is composed of 2*n terms,
where n is the number of known points, and the error is separately computed
on x and on y coordinate.

Consider Figure 6 (the error is drawn in red).
P and Q are the known points. In the previous section it has been shown

how P’ is calculated. P” is obtained from P’ via S matrix:
P ′′ = S ∗ P ′ XP ′′

YP ′′

wP ′′

 =

 s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34

∗


xP ′

yP ′

zP ′

1

 =

 s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34

∗


a1 ∗ xΓ(7) + a2 ∗ xΓ(8) + a3 ∗ xΓ(9)

a1 ∗ yΓ(7) + a2 ∗ yΓ(8) + a3 ∗ yΓ(9)

a1 ∗ zΓ(7) + a2 ∗ zΓ(8) + a3 ∗ zΓ(9)

1


P ′′ =

 XP ′′

YP ′′

wP ′′

 /wP ′′ =

 xP ′′

yP ′′

1


The reprojection error is the distance between Q and P”:

8

Figure 6: Reprojection error

√
(xQ − xP ′′)2 − (yQ − yP ′′)2 = 0− > (xQ − xP ′′)2 − (yQ − yP ′′)2 = 0

where
xP ′′ =

s11∗(a1∗xΓ(7)+a2∗xΓ(8)+a3∗xΓ(9))+s12∗(a1∗yΓ(7)+a2∗yΓ(8)+a3∗yΓ(9))+s13∗(a1∗zΓ(7)+a2∗zΓ(8)+a3∗zΓ(9))+s14

s31∗(a1∗xΓ(7)+a2∗xΓ(8)+a3∗xΓ(9))+s32∗(a1∗yΓ(7)+a2∗yΓ(8)+a3∗yΓ(9))+s33∗(a1∗zΓ(7)+a2∗zΓ(8)+a3∗zΓ(9))+s34

yP ′′ =
s21∗(a1∗xΓ(7)+a2∗xΓ(8)+a3∗xΓ(9))+s22∗(a1∗yΓ(7)+a2∗yΓ(8)+a3∗yΓ(9))+s23∗(a1∗zΓ(7)+a2∗zΓ(8)+a3∗zΓ(9))+s24

s31∗(a1∗xΓ(7)+a2∗xΓ(8)+a3∗xΓ(9))+s32∗(a1∗yΓ(7)+a2∗yΓ(8)+a3∗yΓ(9))+s33∗(a1∗zΓ(7)+a2∗zΓ(8)+a3∗zΓ(9))+s34

And so on for all the other known points.

1.4 Smoothness error

A condition on the smoothness of the surface must be taken into account. To
do this, it is sufficient to minimize the second derivative on the two deformed
edges: this results on one term for each three consecutive points on the same
edge sequence.

Consider Figure 7, minimizing the second derivative on the curve means:

x1 − x2 = x2 − x3− > x1 − 2 ∗ x2 + x3 = 0
y1 − y2 = y2 − y3− > y1 − 2 ∗ y2 + y3 = 0

9

Figure 7: Approximation of an edge

z1 − z2 = z2 − z3− > z1 − 2 ∗ z2 + z3 = 0
x2 − x3 = x3 − x4− > x2 − 2 ∗ x3 + x4 = 0
y2 − y3 = y3 − y4− > y2 − 2 ∗ y3 + y4 = 0
z2 − z3 = z3 − z4− > z2 − 2 ∗ z3 + z4 = 0
In the same way, the smoothness error can be calculated for each triple of
consecutive points on the same edge.

1.5 Lower edge length error

The dimension of the template must be preserved. We assume that points
are regularly sampled on the lower edge (this simplify the error expression);
the edge length W and the number of points M are known, so it is possible
to calculate the theoretical distance between two points N=W/(M-1). The
error terms in this case are N-1, where N is the number of vertices on the
lower edge.

Considering Figure 7 the error can be written as:√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 = N => (x1 − x2)
2 + (y1 − y2)

2 +

(z1 − z2)
2 −N2 = 0√

(x2 − x3)
2 + (y2 − y3)

2 + (z2 − z3)
2 = N => (x2 − x3)

2 + (y2 − y3)
2 +

(z2 − z3)
2 −N2 = 0√

(x3 − x4)
2 + (y3 − y4)

2 + (z3 − z4)
2 = N => (x3 − x4)

2 + (y3 − y4)
2 +

(z3 − z4)
2 −N2 = 0

1.6 Upper edge length error

As in the case of lower edge length error, the upper edge length must be
preserved. This time, points are not equispaced, so the error expression will
be different. In this case there is only one error term.

Considering Figure 7 the error can be written as:

10

√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2+
√

(x2 − x3)
2 + (y2 − y3)

2 + (z2 − z3)
2+√

(x3 − x4)
2 + (y3 − y4)

2 + (z3 − z4)
2 = W

=>√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2+
√

(x2 − x3)
2 + (y2 − y3)

2 + (z2 − z3)
2+√

(x3 − x4)
2 + (y3 − y4)

2 + (z3 − z4)
2 −W = 0

1.7 Height error

Besides width preservation, template height must be preserved too. Since Γ
gives a broken line which constitutes a series of triangles, we must enforce
the constraint on each triangle, which must be equal to the known template
height H. So, this error is made of N terms, where N is the number of triangles
present in the mesh.

Considering Figure 6, the expression for height error in the case of the
first triangle (for all others triangles the error is calculated in the same way)
is reported; h indicates the triangle height:
h = ‖(v1−v3)×(v3−v2)‖

‖v1−v3‖ = H

=> ((y1−y3)∗(z3−z2)−(z1−z3)∗(y3−y2))2+((z1−z3)∗(x3−x2)−(x1−x3)∗(z3−z2))2+((x1−x3)∗(y3−y2)−(y1−y3)∗(z3−z2))2

(x1−x3)2+(y1−y3)2+(z1−z3)2
−

H2 = 0

11

2 Energy function

The implemented Matlab function energy.m computes the error terms de-
scribed in the previous section.

In this section the function will be explained in the details, since to im-
prove the performance the code has been written in a non-intuitive way.

2.1 Input and output parameters

Input parameters of energy.m function are:

• x: x is the approximation of the broken line representing Θ; it is the
vector objective of the minimization. It must be in the form:

x1

x2

. . .
xn

y1

y2

. . .
yn

z1

z2

. . .
zn


So, it is a column vector with all the x coordinates followed by y coor-
dinates and then by z coordinates.

Under the assumption that the two straight edges are the vertical ones,
the first point must be located in the upper left corner of the template,
the second one in the bottom left corner (so, the first and the second
point are on one of the two not deformable edges), and all the others
must build the broken line that describes the template. The points
must cover the entire template’s surface; this means that the last two
points must be located on the corners of the right not deformable edge.
In this way, all odd points in the x array are located on the upper edge,
while all the even points are located on the lower edge.

x must contain at least 12 values: in fact to cover the whole template
surface, at least 4 points are necessary (they form 2 triangles that cover
the entire rectangular surface); since for each point there are x, y, and
z coordinates, 12 values are necessary.

12

Moreover, since x contains 3 coordinate per point, the number of ele-
ments must be divisible per 3.

An example of how the points must be located on the template is shown
in Figure 8.

Figure 8: Example of template

This image will be also taken into account for the following explanation,
since it contains an amount of the broken line points which allows to
well understand how the error terms are calculated (with 8 points there
are at least 2 error terms per kind of error).

• dataStruct is a structure containing the following fields:

– S: the 3x4 camera calibration matrix

– tPoints: Nx3 matrix, each row contains the homogeneous coor-
dinates of the N points on θ image; in the case of Figure 8 the
coordinates of A and B points are stored:

tPoints =

[
1 1.5 1
3 3 1

]
– iPoints: Nx3 matrix, each row contains the homogeneous coordi-

nates of the N points on I image; it has the same format of tPoints
matrix

– W: the template width

– H: the template height

13

Output parameters are:

• error e: this is a vector which contains in each position an error term
calculated as explained in the previous section; this is the error function
the minimization will use

• jacobian j: this is a matrix in the form
∂e(1)
∂x1

. . . ∂e(1)
∂xn

∂e(1)
∂y1

. . . ∂e(1)
∂yn

∂e(1)
∂z1

. . . ∂e(1)
∂zn

. . .
∂e(m)
∂x1

. . . ∂e(m)
∂xn

∂e(m)
∂y1

. . . ∂e(m)
∂yn

∂e(m)
∂z1

. . . ∂e(m)
∂zn


where on each of the m line there is the partial derivatives of the error
contributions respect to all the 3*N variables

2.2 The lsqnonlin function

lsqnonlin is the matlab function that solves nonlinear least-squares curve fit-
ting problems of the form
minx(f(x)) = f1(x)2 + f2(x)2 + · · ·+ fn(x)2

The function requires as input a user-defined function to compute the vector-
valued function in the form

F (x) =


f1(x)
f2(x)
. . .

fn(x)


As additional information for the minimization, the Jacobian matrix is com-
puted.

2.3 Settings of the matrices

In this subsection and in the following ones Figure 8 will be taken into account
to explain how all the error terms are calculated.

In the first part of the function, the input parameter are reshaped in a
form that is more useful for the following calculation; then the barycentric
coordinates of the points and the vertices the points A and B belongs to are
calculated.

The following steps are followed:

1. aPoints matrix is calculated: aPoints is a Nx4 matrix, where N is the
number of the broken line points; on each row there are the 3D coordi-
nates of one point. In example, if the Θ image correspondent to Figure
8 has the same shape of the Figure but it is located at z=5, aPoints

14

will be:

x =



0
0
1
2
4
4
6
6
4
0
4
0
4
0
4
0
5
5
5
5
5
5
5
5



=> aPoints =



0 4 5 1
0 0 5 1
1 4 5 1
2 0 5 1
4 4 5 1
4 0 5 1
6 4 5 1
6 0 5 1


=> aPoints =



x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1
x5 y5 z5 1
x6 y6 z6 1
x7 y7 z7 1
x8 y8 z8 1



2. the back projection of Θ on θ is calculated as explained in the previous
section; in the example it corresponds to Figure 8

3. the barycentric coordinates for A and B points are calculated as ex-
plained in the previous section; barCoord and verTri matrices are then
generated. barCoord is a Mx3 matrix, in each rows the three barycen-
tric coordinates for each template point are contained. verTri is a Mx3
matrix, each row contains the number of the three broken line vertices
that contains the point. In the example:

verTri =

[
2 3 4
3 4 5

]
barCoord =

[
0.3125 0.3750 0.3125
0.1667 0.2500 0.5833

]
=

[
a1 a2 a3

b1 b2 b3

]
Since point A belongs to the triangles whose vertices are 2, 3, 4, the
first line of verTri contains 2,3,4 and the first row of barCoord contains
the correspondent barycentric coordinates; the same happens for point

15

B.

At this point, if there is some point that doesn’t belong to any triangle (this
is the case in which at least one line of verTri matrix remains at zero) the
function returns a very high error, to indicate that the solution is not good.
Otherwise, the error terms are calculated.

2.4 Reprojection error and jacobian

For the calculation of reprojection error, the following steps are followed:

1. M=aPoints(verTri’,:); M contains 3m rows (m is here the number of
template points, 2 in the example); each 3 rows block contains the
homogeneous coordinates of the triangle vertices the point belong to,
in the same order of barCoord:

M =


x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1
x3 y3 z3 1
x4 y4 z4 1
x5 y5 z5 1


The first block, as the first line of barCoord, is relative to the first
point: first line of M contains the coordinates of the vertice that will be
multiplied per a1, the second line contains the coordinates of the vertice
that will be multiplied per a2 and the third line contains the coordinates
of the vertice that will be multiplied per a3. The same things happens
for the second block: it contains in order the coordinates that will be
multiplied per b1, b2 and b3, whose sum gives point B.

2. B=repmat(reshape(barCoord’,numel(barCoord),1), 1, 4); B reshapes
the matrix of barCoord in preparation to the following calculations; B
is a 3mx4 matrix, where m is the number of template points.

B =


a1 a1 a1 a1

a2 a2 a2 a2

a3 a3 a3 a3

b1 b1 b1 b1

b2 b2 b2 b2

b3 b3 b3 b3


3. T=(B.*M)’; T is a 4x3m matrix (where m is the number of template

points). On the columns of T there are the terms that, if summed, give

16

the coordinates on Θ of the template points:

T =


a1 ∗ x2 a2 ∗ x3 a3 ∗ x4 b1 ∗ x3 b2 ∗ x4 b3 ∗ x5

a1 ∗ y2 a2 ∗ y3 a3 ∗ y4 b1 ∗ y3 b2 ∗ y4 b3 ∗ y5

a1 ∗ z2 a2 ∗ z3 a3 ∗ z4 b1 ∗ z3 b2 ∗ z4 b3 ∗ z5

a1 a2 a3 b1 b2 b3


4. T=reshape(T’, 3, 4*size(tPoints,1)); T is a 3x3m matrix: it is reshaped

because of the following computations:

T =

 a1 ∗ x2 b1 ∗ x3 a1 ∗ y2 b1 ∗ y3 a1 ∗ z2 b1 ∗ z3 a1 b1

a2 ∗ x3 b2 ∗ x4 a2 ∗ y3 b2 ∗ y4 a2 ∗ z3 b2 ∗ z4 a2 b2

a3 ∗ x4 b3 ∗ x5 a3 ∗ y4 b3 ∗ y5 a3 ∗ z4 b3 ∗ z5 a3 b3


5. T=sum(T); T is a 1x3m vector: on its column there are the coordinates

of the template points in this format (xA xB yA yB zA zB 1 1)
:

T =


a1 ∗ x2 + a2 ∗ x3 + a3 ∗ x4 b1 ∗ x3 + b2 ∗ x4 + b3 ∗ x5

. . . a1 ∗ y2 + a2 ∗ y3 + a3 ∗ y4 b1 ∗ y3 + b2 ∗ y4 + b3 ∗ y5 . . .

. . . a1 ∗ z2 + a2 ∗ z3 + a3 ∗ z4 b1 ∗ z3 + b2 ∗ z4 + b3 ∗ z5 . . .

. . . a1 + a2 + a3 b1 + b2 + b3


6. T=reshape(T, size(tPoints,1), 4); T is now a mx4 matrix: on each row

there are the coordinates of the template points projected on Θ:

T =


a1 ∗ x2 + a2 ∗ x3 + a3 ∗ x4 a1 ∗ y2 + a2 ∗ y3 + a3 ∗ y4 . . .

. . . a1 ∗ z2 + a2 ∗ z3 + a3 ∗ z4 a1 + a2 + a3

b1 ∗ x3 + b2 ∗ x4 + b3 ∗ x5 b1 ∗ y3 + b2 ∗ y4 + b3 ∗ y5 . . .
. . . b1 ∗ z3 + b2 ∗ z4 + b3 ∗ z5 b1 + b2 + b3


7. u=(S*T’)’; u (a mx4 matrix) contains the previous coordinates multi-

plied by the camera projection matrix; note that the third coordinate
of the points can be different from one; the points are rescaled in re-
spect to the weight factor in the following step, since in the calculation
of the jacobian it is necessary to have the quantity calculated at this
step

8. ed=iPoints-u./repmat(u(:,3), 1, 3); ed contains the reprojection error
on three coordinates; it has the following form:

ed =

[
edxA

edyA
0

edxB
edyb

0

]
The error on z is 0 because the error is calculated on I image, so in 2D
space

9. ed=reshape(ed, numel(ed), 1); the error is reshaped in this way:

17

ed =


edxA

edxB

edyA

edyb

0
0


10. ed=ed(1: end-size(tPoints,1)); this instruction eliminates from the ex-

pression of the previous step the ending 0s; the resulting expression is
the reprojection error:

ed =


edxA

edxB

edyA

edyb


Note that, respect to the expression explained in the previous section,
the terms has not been squared. This because the lsqnonlin function
requires the terms not squared as input parameters.

The calculation of the Jacobian is more complicated since there are lots
of terms depending from the problem variables: in fact, each barycentric
coordinate depends from all problem variables. Now an example about the
derivative relative x3 is shown, then the code will be explained as in the case
of the error.

Consider the expressions of the error on x coordinates for point A (X
indicates the x coordinate of A on I image):

{1}XA − s11∗(a1∗x2+a2∗x3+a3∗x4)+s12∗(a1∗y2+a2∗y3+a3∗y4)+s13∗(a1∗z2+a2∗z3+a3∗z4)+s14
s31∗(a1∗x2+a2∗x3+a3∗x4)+s32∗(a1∗y2+a2∗y3+a3∗y4)+s33∗(a1∗z2+a2∗z3+a3∗z4)+s34

At first the derivative involves a fraction (XA is a constant), so the derivative
has this form:
−N ′∗D+N∗D′

D2

where N is the numerator of {1}, N’ its derivative respect to the variable
taken into account, D is the denominator of {1} and D’ its derivative respect
to the same variable.

Let’s now look at N’ and D’: N and D has similar form, so only the case
of N’ will be explained.

Since all the barycentric coordinate depends on x3, the derivatives of the
error numerator will have this form:
∂N
∂x3

= −(s11 ∗ (∂a1

∂x3
∗ x2 + ∂a2

∂x3
∗ x3 + a3 + ∂a3

∂x3
∗ x4) + s12 ∗ (∂a1

∂x3
∗ y2 + ∂a2

∂x3
∗ y3 +

∂a3

∂x3
∗ y4) + s13 ∗ (∂a1

∂x3
∗ z2 + ∂a2

∂x3
∗ z3 + ∂a3

∂x3
∗ z4))

Let’s observe now the form of the barycentric coordinates:
a1 = X3∗Y4−X3∗YA+X4∗YP−Y3∗X4+Y3∗XP−Y4∗XP

Y3∗X2−Y4∗X2+Y4∗X3−Y2∗X3+Y2∗X4−Y3∗X4

a2 = X2∗YP−X2∗Y4+X4∗Y2−YP ∗X4+Y4∗XP−Y2∗XP

Y3∗X2−Y4∗X2+Y4∗X3−Y2∗X3+Y2∗X4−Y3∗X4

18

a3 = X2∗Y3−X2∗YP +X3∗YP−Y2∗X3+Y2∗XP−Y3∗XP

Y3∗X2−Y4∗X2+Y4∗X3−Y2∗X3+Y2∗X4−Y3∗X4

It is important to observe that X and Y on which the barycentric coordi-
nates depends, are not the same coordinates on which the derivative is being
calculated. In fact, to calculate the barycentric coordinates, the coordinates
relatives to the projection on 2D space of Θ are taken into account. For this
reason, 2D coordinates are written in capital letter, while the 3D coordinates
are written in tiny letters.
Moreover, only X coordinates depends on x coordinates, since Y and Z are
fixed in the calculus of the 2D reprojection.
The barycentric coordinates are three fractions, so again their derivative will
be of the form
N ′

a∗Da−Na∗D′
a

Da
2

where Na and Da are the generic numerator and the generic denominator of
a barycentric coordinate.

The denominator is the same for all the coordinates, so its derivative will
be common:
∂Da

∂x3
= ∂X2

∂x3
∗ Y3 − ∂X2

∂x3
∗ Y4 + ∂X3

∂x3
∗ Y4 − ∂X3

∂x3
∗ Y2 + ∂X4

∂x3
∗ Y2 − ∂X4

∂x3
∗ Y3

The derivatives of the numerators are:
∂Na1

∂x3
= ∂X3

∂x3
∗ Y4 − ∂X3

∂x3
∗ YA + ∂X4

∂x3
∗ YA − ∂X4

∂x3
∗ Y3

∂Na2

∂x3
= ∂X2

∂x3
∗ YA − ∂X2

∂x3
∗ Y4 + ∂X4

∂x3
∗ Y2 − ∂X4

∂x3
∗ YA

∂Na3

∂x3
= ∂X2

∂x3
∗ Y3 − ∂X2

∂x3
∗ YA + ∂X3

∂x3
∗ YA − ∂X3

∂x3
∗ Y2

Now let’s look at the forms of the 2D X coordinates:
X2 = 0
X3 =

√
(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2

X4 =
√

(x2 − x4)2 + (y2 − y4)2 + (z2 − z4)2

So, only the derivative of X3 will be not null for x3.
Now the code calculating the Jacobian for reprojection error will be ex-

plained:

1. Jed=zeros(size(ed,1), size(aPoints,1)*3); Jes is the matrix that will con-
tain the Jacobian

2. D=repmat(u(:,3), 1, 3*size(aPoints,1)); D contains the denominators
of the error terms repeated on columns for all the derivation variables:

D(:, 1) =


s31 ∗ (a1 ∗ x2 + a2 ∗ x3 + a3 ∗ x4) + s32 ∗ (a1 ∗ y2 + a2 ∗ y3 + a3 ∗ y4)+

+s33 ∗ (a1 ∗ z2 + a2 ∗ z3 + a3 ∗ z4) + s34 ∗ (a1 + a2 + a3)
s31 ∗ (b1 ∗ x3 + b2 ∗ x4 + b3 ∗ x5) + s32 ∗ (b1 ∗ y3 + b2 ∗ y4 + b3 ∗ y5)+

+s33 ∗ (b1 ∗ z3 + b2 ∗ z4 + b3 ∗ z5) + s34 ∗ (b1 + b2 + b3)


3. N1=repmat(u(:,1), 1, 3*size(aPoints,1)); N1 contains the numerators

of the error on x coordinates, repeated on all columns for all the deriva-

19

tion variables:

N1(:, 1) =


s11 ∗ (a1 ∗ x2 + a2 ∗ x3 + a3 ∗ x4) + s12 ∗ (a1 ∗ y2 + a2 ∗ y3 + a3 ∗ y4)+

+s13 ∗ (a1 ∗ z2 + a2 ∗ z3 + a3 ∗ z4) + s14 ∗ (a1 + a2 + a3)
s11 ∗ (b1 ∗ x3 + b2 ∗ x4 + b3 ∗ x5) + s12 ∗ (b1 ∗ y3 + b2 ∗ y4 + b3 ∗ y5)+

+s13 ∗ (b1 ∗ z3 + b2 ∗ z4 + b3 ∗ z5) + s14 ∗ (b1 + b2 + b3)


4. N2=repmat(u(:,2), 1, 3*size(aPoints,1)); N2 contains the numerators

of the error on y coordinates, repeated on all columns for all the deriva-
tion variables:

N2(:, 1) =


s21 ∗ (a1 ∗ x2 + a2 ∗ x3 + a3 ∗ x4) + s22 ∗ (a1 ∗ y2 + a2 ∗ y3 + a3 ∗ y4)+

+s23 ∗ (a1 ∗ z2 + a2 ∗ z3 + a3 ∗ z4) + s24 ∗ (a1 + a2 + a3)
s21 ∗ (b1 ∗ x3 + b2 ∗ x4 + b3 ∗ x5) + s22 ∗ (b1 ∗ y3 + b2 ∗ y4 + b3 ∗ y5)+

+s23 ∗ (b1 ∗ z3 + b2 ∗ z4 + b3 ∗ z5) + s24 ∗ (b1 + b2 + b3)


5. a=verTri(:,1); a contains the first column of verTri:[

2
3

]
6. Sx=[-aPoints(a, 1) aPoints(a,1) -aPoints(a+1,1) aPoints(a+1, 1) aPoints(a+2,

1) -aPoints(a+2, 1)]; Sx is used to build the denominator of the barycen-
tric coordinates:

Sx =

[
−x2 x2 −x3 x3 x4 −x4

−x3 x3 −x4 x4 x5 −x5

]
7. Dx=[aPoints(a+2, 2) aPoints(a+1,2) aPoints(a,2) aPoints(a+2, 2) aPoints(a,

2) aPoints(a+1, 2)]; as Sx, Dx is used to build the denominator of the
barycentric coordinates:

Dx =

[
y4 y3 y2 y4 y2 y3

y5 y4 y3 y5 y3 y4

]
8. DA=(sum((Sx.*Dx)’))’; DA contains the denominator of the barycen-

tric coordinates:

DA =

[
−x2 ∗ y4 + x2 ∗ y3 − x3 ∗ y2 + x3 ∗ y4 + x4 ∗ y2 − x4 ∗ y3

−x3 ∗ y5 + x3 ∗ y4 − x4 ∗ y3 + x4 ∗ y5 + x5 ∗ y3 − x5 ∗ y4

]
9. na1=aPoints(a+2,1).*tPoints(:,2)-tPoints(:,1).*aPoints(a+2, 2)-aPoints(a+1,

1).*tPoints(:,2)+aPoints(a+1,2).*tPoints(:,1)+aPoints(a+1, 1).*aPoints(a+2,
2)-aPoints(a+1, 2).*aPoints(a+2, 1); na1 contains the numerator of the
first barycentric coordinate:

na1 =

[
x4 ∗ yA− xA ∗ y4 − x3 ∗ yA + y3 ∗ xA + x3 ∗ y4 − x4 ∗ y3

x5 ∗ yB − xB ∗ y5 − x4 ∗ yB + y4 ∗ xB + x4 ∗ y5 − x5 ∗ yB

]
10. na2=aPoints(a,1).*tPoints(:,2)-aPoints(a,1).*aPoints(a+2, 2)+aPoints(a,

2).*aPoints(a+2,1)-aPoints(a+2,1).*tPoints(:,2)+aPoints(a+2, 2).*tPoints(:,

20

1)-aPoints(a, 2).*tPoints(:, 1);
na2 contains the numerator of the second barycentric coordinate: na2 =[

x2 ∗ yt1− x2 ∗ y4 + x4 ∗ y2 − x4 ∗ yt1 + xt1 ∗ y4 − y2 ∗ xt1
x3 ∗ yt2− x3 ∗ y5 + x5 ∗ y3 − x5 ∗ yt2 + xt2 ∗ y5 − y3 ∗ xt2

]
11. na3=-aPoints(a+1,1).*aPoints(a,2)+aPoints(a+1,2).*aPoints(a, 1)+aPoints(a+1,

1).*tPoints(:,2)-aPoints(a,1).*tPoints(:,2)+aPoints(a, 2).*tPoints(:, 1)-
aPoints(a+1, 2).*tPoints(:, 1);
na3 contains the numerator of the third barycentric coordinate: na3 =[
−x3 ∗ y2 + x2 ∗ y3 + x3 ∗ yt1− x2 ∗ yt1 + y2 ∗ xt1− y3 ∗ xt1
−x4 ∗ y3 + x3 ∗ y4 + x4 ∗ yt2− x3 ∗ yt2 + y3 ∗ xt2− y4 ∗ xt2

]
12. dX is calculated; from now on the formulas to calculate the various

terms are very long, in the same way the result is very long to be
reported here; so, from now on only the meaning of the calculated
matrixes will be reported. Moreover, the matrixes have all dimension
(number of errors x number of derivation variables), so the final Jaco-
bian can easily be computed by multiplying and summing the matrixes.
dX contains the derivatives of the projection on the 2D space of Θ re-
spect all the derivation variables

13. da1 contains the derivatives of the first barycentric coordinates respect
to all the derivation variables

14. da2 contains the derivatives of the second barycentric coordinates re-
spect to all the derivation variables

15. da3 contains the derivatives of the third barycentric coordinates respect
to all the derivation variables

16. bAr contains the barycentric coordinates aligned in the matrix with
the variables they are multiplied to in the error terms:

bAr =


0 a1 a2 a3 0 0 0 0 0 a1 a2 a3 . . .

. . . 0 0 0 0 0 a1 a2 a3 0 0 0 0
0 0 b1 b2 b3 0 0 0 0 0 b1 b2 . . .

. . . b3 0 0 0 0 0 b1 b2 b3 0 0 0


In example, a1 is multiplied by x2, y2, z2, so its positions are in the
columns relatives to those variables

17. Esse is a matrix containing the terms of the camera calibration matrix
in a form useful to compute the following terms

18. dN1 contains the derivatives of the numerator of the x error terms; it
is calculated applying the formula of the derivative of the error terms

21

19. dN2 contains the derivatives of the numerator of the y error terms; it
is calculated applying the formula of the derivative of the error terms

20. dD contains the derivatives of the denominator of the error terms; it is
calculated applying the formula of the derivative of the error terms

21. Jed1 = (dN1. ∗ D − dD. ∗ N1)./(D.2); contains the Jacobian of the x
error terms

22. Jed(1:2:end,:)=Jed1; since in the error array the error on x and y co-
ordinates are alternated, the derivative of the x error terms are posed
in the odd rows of the Jacobian, to respect the order

23. Jed1 = (dN2. ∗ D − dD. ∗ N2)./(D.2); contains the Jacobian of the x
error terms

24. Jed(2:2:end,:)=Jed1; the derivative of the y error terms are posed in
the even rows of the Jacobian

2.5 Smoothness error and jacobian

The smoothness error is relative to the second derivative on the two deformed
edges. It is possible to calculate it only if the number on broken line points
is more than 4, because for the computation there is the needs for 3 adjacent
vertices on the same edge, and this condition is satisfied with at least 5 points.
In Figure 9 the green lines represent the four contributes to the smoothness
error in the example and indicates which points are involved.

Figure 9: The green lines shows the vertices involved in the calculation of
smoothness error

It is computed as follows:

22

1. M1=aPoints(1:end-4,1:3); for each error terms, since the error expres-
sion is like xi − 2 ∗ xi+1 + xi+2, M1 contains the coordinates of the
involved vertices with the lowest indexes:

M1 =


x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4


2. M2=aPoints(3:end-2,1:3); for each error terms, M2 contains the coor-

dinates of the involved vertices with the middle indexes:

M2 =


x3 y3 z3

x4 y4 z4

x5 y5 z5

x6 y6 z6


3. M3=aPoints(5:end, 1:3); for each error terms, M3 contains the coordi-

nates of the involved vertices with the highest indexes:

M3 =


x5 y5 z5

x6 y6 z6

x7 y7 z7

x8 y8 z8


4. es=M1-2*M2+M3; es contains the error terms with the error on x

coordinate on the first column, the terms with the error on y on the
second column and the terms with the error on z on the third column:

es =


x1 − 2 ∗ x3 + x5 y1 − 2 ∗ y3 + y5 z1 − 2 ∗ z3 + z5

x2 − 2 ∗ x4 + x6 y2 − 2 ∗ y4 + y6 z2 − 2 ∗ z4 + z6

x3 − 2 ∗ x5 + x7 y3 − 2 ∗ y5 + y7 z3 − 2 ∗ z5 + z7

x4 − 2 ∗ x6 + x8 y4 − 2 ∗ y6 + y8 z4 − 2 ∗ z6 + z8


5. es=reshape(es, numel(es), 1); this instruction reshapes the matrix cal-

culated in the previous point in a vector in which 3 blocks can be
individuated: the first block contains the errors on x coordinate, the
second block contains the errors on y coordinate and the third block
contains the errors on z coordinate

Since the expressions are similar for the three coordinates and for all the
error terms, the Jacobian is very easy to compute. Consider in example the
first error terms:
x1 − 2 ∗ x3 + x5

its derivative respect the 8 x coordinates is [1 0 −2 0 1 0 0 0] (it is
zero for all the others y and z coordinates) . This is the derative of the first
error on y respect the 8 y coordinates and the derivative of the first error on
z respect the 8 z coordinates.

23

The second error term is:
x2 − 2 ∗ x4 + x6

whose derivative respect the 8 x coordinates is [0 1 0 −2 0 1 0 0]
(the same for the first error on y respect the 8 y coordinates and for the first
error on z respect the 8 z coordinates). The error term is always the same:
the result is a 3 block matrix (one for each coordinate) in which each block
is constituted by 3 diagonals.

So, to compute the Jacobian, the following steps are followed:

1. D1=[diag(ones((size(aPoints,1)-4),1)) zeros((size(aPoints,1)-4), 4)]; D1
contains the 1 left diagonal:

D1 =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


2. D2=diag(-2*ones((size(aPoints,1)-4),1), 2);

D2=[D2(1:size(aPoints,1)-4, :), zeros((size(aPoints,1)-4), 2)]; D2 con-
tains the -2 middle diagonal:

D2 =


0 0 −2 0 0 0 0 0
0 0 0 −2 0 0 0 0
0 0 0 0 −2 0 0 0
0 0 0 0 0 −2 0 0


3. D3=diag(ones(size(aPoints,1)-4,1), 4);

D3=D3(1:size(aPoints,1)-4, :); D3 contains the 1 right diagonal:

D3 =


0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


4. Jes1=D1+D2+D3; Jes1 contains the derivative of the error terms re-

spect to the same coordinate on which the error is calculated:

Jes1 =


1 0 −2 0 1 0 0 0
0 1 0 −2 0 1 0 0
0 0 1 0 −2 0 1 0
0 0 0 1 0 −2 0 1


5. Jes=[Jes1 zeros(size(aPoints)-4, size(aPoints)*2); zeros(size(aPoints)-

4, size(aPoints)) Jes1 zeros(size(aPoints)-4, size(aPoints)); zeros(size(aPoints)-
4, size(aPoints)*2) Jes1]; Jes will contain the error expression:

24

Jes =

 Jes1 0 0
0 Jes1 0
0 0 Jes1


2.6 Length preservation on lower edge error and jaco-

bian

Since the points on lower edge are supposed to be equi-spaced, there will be
N-1 error terms, where N is the number of points on the lower edge.

The error is calculated in this way:

1. N = (W/(floor(size(aPoints, 1)/2)− 1))2; N is the squared distance
between two consecutive points on lower edge; in the example, N =
22 = 4

2. M1=aPoints(2:2:end-2,1:3); the error is given by the sum of squared
differences; M1 contains the left terms of the differences:

M1 =

 x2 y2 z2

x4 y4 z4

x6 y6 z6


3. M2=aPoints(4:2:end, 1:3); M2 contains the right terms of the differ-

ences

M1 =

 x4 y4 z4

x6 y6 z6

x8 y8 z8


4. em1=dot((M1-M2)’,(M1-M2)’); em1 contains the squared distance be-

tween two consecutive points on lower edge: (x2 − x4)
2 + (y2 − y4)

2 + (z2 − z4)
2 . . .

(x4 − x6)
2 + (y4 − y6)

2 + (z4 − z6)
2 . . .

(x6 − x8)
2 + (y6 − y8)

2 + (z6 − z8)
2


5. em1=em1’-N*ones(size(em1,1),1); the difference between the terms cal-

culated at the previous step and N are computed; em1 now contains
the error terms

To understand how the Jacobian is calculated, consider the first error term:
the only not-null jacobian terms will be the derivative respect the second and
the fourth point and it will have the following form 0 2 ∗ (x2 − x4) 0 2 ∗ (x4 − x2) 0 0 0 0 . . .

. . . 0 2 ∗ (y2 − y4) 0 2 ∗ (y4 − y2) 0 0 0 0 . . .

. . . 0 2 ∗ (z2 − z4) 0 2 ∗ (z4 − z2) 0 0 0 0


The Jacobian has the same form for all terms, so it is computed in this way:

25

1. D=2*[-(M2-M1) (M2-M1)]; D is a mx6 2 block matrix, where m is
the number of error terms; since for each coordinate and for each er-
ror terms there are two jacobian terms, the left block contains the left
jacobian terms and the right block contains the right jacobian terms
(observe that in the previous example the term (x2 − x4) was in the
left of the row, so in D matrix it will be on the left block):

D =

 2 ∗ x2 − 2 ∗ x4 2 ∗ y2 − 2 ∗ y4 2 ∗ z2 − 2 ∗ z4 2 ∗ x4 − 2 ∗ x2 2 ∗ y4 − 2 ∗ y2 2 ∗ z4 − 2 ∗ z2

2 ∗ x4 − 2 ∗ x6 2 ∗ y4 − 2 ∗ y6 2 ∗ z4 − 2 ∗ z6 2 ∗ x6 − 2 ∗ x4 2 ∗ y6 − 2 ∗ y4 2 ∗ z6 − 2 ∗ z4

2 ∗ x6 − 2 ∗ x8 2 ∗ y6 − 2 ∗ y8 2 ∗ z6 − 2 ∗ z8 2 ∗ x8 − 2 ∗ x6 2 ∗ y8 − 2 ∗ y6 2 ∗ z8 − 2 ∗ z6


2. Jm1=zeros(size(em1,1), 3*size(aPoints,1)); creates the vector that will

contain the jacobian terms (null vector of mx3N dimension, where m
is the number of error terms, N the number of variables)

3. indici=size(em1,1)+1:2*size(em1,1)+1:size(em1,1)*(size(aPoints,1)-1);
indexing Jm1 in a linear way, vector indici contains the indexes for the
derivatives of the left error terms respect to x coordinates; in the ex-
ample, it will contain [4 11 18]

4. somma=size(aPoints,1)*size(em1,1); since the derivative respect y and
z of their respective left error terms has the same form than in the case
of x coordinates, they can be computed all together; variable somma
contains the differences between the linear indexes of the first met
derivative in Jm1 respect y and the first met derivative in Jm1 re-
spect x (that is the same difference between the first derivative respect
z and the first derivative respect y); in the example, somma = 24

5. s=[indici somma*ones(1, size(indici,2))+indici 2*somma*ones(1, size(indici,2))+indici];
s contains the linear indexes for the not-null derivatives of the left error
terms; in the example, somma=[4 11 18 28 35 42 52 59 66]

6. Jm1(s)=D(1:size(em1,1)*3); the left block of matrix D is copied into
the s index of Jm1; the result is the following:

Jm1 =



0 2(x2 − x4) 0 0 0 0 0 0
. . . 0 2(y2 − y4) 0 0 0 0 0 0 . . .
. 0 2(z2 − z4) 0 0 0 0 0 0
0 0 0 2(x4 − x6) 0 0 0 0

. . . 0 0 0 2(y4 − y6) 0 0 0 0 . . .

. 0 0 0 2(z4 − z6) 0 0 0 0
0 0 0 0 0 2(x6 − x8) 0 0

. . . 0 0 0 0 0 2(y6 − y8) 0 0 . . .

. 0 0 0 0 0 2(z6 − z8) 0 0


7. s=s+2*size(em1,1)*ones(1,size(s,2)); since the right block of D matrix

must be positioned in the same position than the previous s vector
translated of 2 columns, s is updated: in this case s=[10 17 24 34 41
48 58 65 72]

26

8. Jm1(s)=D(3*size(em1,1)+1:end); the right block of of matrix D is
copied into the s index of Jm1:

Jm1 =



0 2(x2 − x4) 0 2(x4 − x2) 0 0 0 0
. . . 0 2(y2 − y4) 0 2(y4 − y2) 0 0 0 0 . . .
. 0 2(z2 − z4) 0 2(z4 − z2) 0 0 0 0
0 0 0 2(x4 − x6) 0 2(x6 − x4) 0 0

. . . 0 0 0 2(y4 − y6) 0 2(y6 − y4) 0 0 . . .

. 0 0 0 2(z4 − z6) 0 2(z6 − z4) 0 0
0 0 0 0 0 2(x6 − x8) 0 2(x8 − x6)

. . . 0 0 0 0 0 2(y6 − y8) 0 2(y8 − y6) . . .

. 0 0 0 0 0 2(z6 − z8) 0 2(z8 − z6)


this is the final Jacobian

2.7 Length preservation on upper edge error and ja-
cobian

Since points on lower edge are not equi-spaced, the distances between adja-
cent points must be summed; the error is calculated in this way:

1. M1=aPoints(1:2:end-2,1:3); as in the case of the length on lower edge,
the distance between two points involves squared differences; M1 con-
tains the left terms of the differences:

M1 =

 x1 y1 z1

x3 y3 z3

x5 y5 z5


2. M2=aPoints(3:2:end, 1:3); as in the previous case, M2 contains the

right terms of the differences:

M1 =

 x3 y3 z3

x5 y5 z5

x7 y7 z7


3. A=M1-M2; A contains the differences that have to be squared:

A =

 x1 − x3 y1 − y3 z1 − z3

x3 − x5 y3 − y5 z3 − z5

x5 − x7 y5 − y7 z5 − z7


4. B=M2-M1; B contains the opposite terms of A; this matrix is useful

for Jacobian calculation:

A =

 x3 − x1 y3 − y1 z3 − z1

x5 − x3 y5 − y3 z5 − z3

x7 − x5 y7 − y5 z7 − z5


5. em=dot(A’,A’); em contains the squared distance between two adja-

cent points:
em =

[
(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2 (x3 − x5)2 + (y3 − y5)2 + (z3 − z5)2 (x5 − x7)2 + (y5 − y7)2 + (z5 − z7)2]

]

27

6. em=em.̂(1/2); the squared root is computed on each term calculated in
the previous step; em contains now the distance between two adjacent
points

7. em2=sum(em)-W; em2 contains the error expression (W is the tem-
plate width):

em2 =
√

((x1 − x3)
2 + (y1 − y3)

2 + (z1 − z3)
2)+

√
((x3 − x5)

2 + (y3 − y5)
2 + (z3 − z5)

2)+

+
√

((x5 − x7)
2 + (y5 − y7)

2 + (z5 − z7)
2)−W

Since the error expression is a sum of squared root involving different vari-
ables, the derivative of the error respect to a variable with odd index has this
form: (

√
(R))′ = − R′

2∗
√

(R)
It is possible to observe that each variable (but

not the first and the last ones) appears under two squared root, so there are
two contributes to the jacobian. In example, the derivative respect to x3 is:
err′ = − −2∗(x1−x3)

2∗
√

((x1−x3)2+(y1−y3)2+(z1−z3)2)
− 2∗(x3−x5)

2∗
√

((x3−x5)2+(y3−y5)2+(z3−z5)2)

= (x1−x3)√
((x1−x3)2+(y1−y3)2+(z1−z3)2)

+ (x5−x3)√
((x3−x5)2+(y3−y5)2+(z3−z5)2)

It is possible to observe that the numerators of the two terms have two par-
ticular forms: the first sees the coordinate of the precedent point minus the
derivation variable, while the second sees the coordinate of the consequent
point minus derivation variable. This observation is useful for the calculation
of the Jacobian.

The expression is similar for all other variables: it is the sum of two terms
(this is not true for the first and the last ones, because they have only one
term).

The Jacobian is calculated in this way:

1. a1=zeros(1, size(aPoints, 1)*3);
b1=zeros(1, size(aPoints, 1)*3); a1 and b1 are two matrix used for stor-
ing the temporary results of the derivative

2. indici=[1:2:size(aPoints, 1)-2 (size(aPoints,1))*ones(1, ceil(size(aPoints,
1)/2)-1)+(1:2:(size(aPoints, 1)-2)) (2*size(aPoints,1))*ones(1, ceil(size(aPoints,
1)/2)-1)+(1:2:(size(aPoints, 1)-2))]; as in the previous case, a1 and b1

will be linearly indexed. indici array contains the index of the deriva-
tives terms in which the numerator has the form derivation variable
minus the coordinate of the consequent point

3. a1(indici)=-A(1:end)./repmat(em, 1, 3); a1 contains the derivatives
terms in which the numerator has the form coordinate of the conse-

28

quent point minus derivation variable:

a1 =



(x3−x1)√
((x1−x3)2+(y1−y3)2+(z1−z3)2)

0
(x5−x3)√

((x3−x5)2+(y3−y5)2+(z3−z5)2)
0

(x7−x5)√
((x5−x7)2+(y5−y7)2+(z5−z7)2)

0 0 0 . . .

(y3−y1)√
((x1−x3)2+(y1−y3)2+(z1−z3)2)

0
(y5−y3)√

((x3−x5)2+(y3−y5)2+(z3−z5)2)
0

(y7−y5)√
(x5−x7)2+(y5−y7)2+(z5−z7)2

0 0 0 . . .

(z3−z1)√
((x1−x3)2+(y1−y3)2+(z1−z3)2)

0
(z5−z3)√

((x3−x5)2+(y3−y5)2+(z3−z5)2)
0

(z7−z5)√
(x5−x7)2+(y5−y7)2+(z5−z7)2

0 0 0



4. indici=2*ones(1,size(indici))+indici; since the terms that will be calcu-
lated in the next points have indexes that are the same of before but
translated of 2 position, indici array is updated

5. b1(indici)=-B(1:end)./repmat(em,1,3); b1 contains the derivatives terms
in which the numerator has the form coordinate of the precedent point
minus derivation variable:

b1 =


0 0

(x1−x3)√
((x1−x3)2+(y1−y3)2+(z1−z3)2)

0
(x3−x5)√

((x3−x5)2+(y3−y5)2+(z3−z5)2)
0

(x5−x7)√
((x5−x7)2+(y5−y7)2+(z5−z7)2)

0 . . .

0 0
(y1−y3)√

((x1−x3)2+(y1−y3)2+(z1−z3)2)
0

(y3−y5)√
((x3−x5)2+(y3−y5)2+(z3−z5)2)

0
(y5−y7)√

((x5−x7)2+(y5−y7)2+(z5−z7)2)
0 . . .

0 0
(z1−z3)√

((x1−x3)2+(y1−y3)2+(z1−z3)2)
0

(z3−z5)√
((x3−x5)2+(y3−y5)2+(z3−z5)2)

0
(z57−z7)√

((x5−x7)2+(y5−y7)2+(z5−z7)2)
0



6. Jm2=a1+b1; summing the two matrix calculated before it is possible
to obtain the Jacobian

2.8 Height preservation error and jacobian

Since to calculate the height of the triangle it is necessary to perform a cross
product and a normalization, this calculus must be done iterating on the
triangles; the error is computed directly applying the formula shown in the
previous section.

The Jacobian too is calculated iterating the triangles; to understand its
form, consider the expression of the error for the first triangle:
((y1−y3)∗(z3−z2)−(z1−z3)∗(y3−y2))2+((z1−z3)∗(x3−x2)−(x1−x3)∗(z3−z2))2+((x1−x3)∗(y3−y2)−(y1−y3)∗(z3−z2))2

(x1−x3)2+(y1−y3)2+(z1−z3)2
−

H2

There is a fraction, so to compute the derivative we need the derivative of
the numerator and of the denominator.

The derivative of the denominator is not-null for points 1 and 3, so for x
coordinates it will be as follows (for y and z it is the same thing):
D′ =

[
2 ∗ (x1 − x3) 0 −2 ∗ (x1 − x3) 0 0 0 0 0

]
The derivative of the numerator is slightly different for each variable, but it
is possible to notice that:

• the numerator is the sum of three squared terms

• each variable compares in two of these terms

• since ∂f(x)2

∂x
= 2∗f ∗ ∂f

∂x
, the squared terms are common to more deriva-

tives

29

So, the Jacobian can be computed as follows (it is reported the example
of the first triangle):

1. T=cross((aPoints(i-2,1:3)-aPoints(i,1:3)),((aPoints(i,1:3)-aPoints(i-1,1:3))));

T array has three elements; considering ∂f(x)2

∂x
= 2 ∗ f ∗ ∂f

∂x
, its terms

represent f in the right member of equation:

T ′ =

 (y1 − y3) ∗ (z3 − z2)− (z1 − z3) ∗ (y3 − y2)
(z1 − z3) ∗ (x3 − x2)− (x1 − x3) ∗ (z3 − z2)
(x1 − x3) ∗ (y3 − y2)− (y1 − y3) ∗ (x3 − x2)


2. P=[(aPoints(i,1:3)-aPoints(i-2,1:3))’; (aPoints(i,1:3)-aPoints(i-1,1:3))’;

(aPoints(i-1,1:3)-aPoints(i-2,1:3))’]; considering ∂f(x)2

∂x
= 2 ∗ f ∗ ∂f

∂x
, P

contains the ∂f
∂x

terms in the right member of equation:

P =



x3 − x1

y3 − y1

z3 − z1

x3 − x2

y3 − y2

z3 − z2

x2 − x1

y2 − y1

z2 − z1


3. N = (norm(T))2; N is the numerator of the error

4. D = (norm((aPoints(i− 2, 1 : 3)− aPoints(i, 1 : 3))))2; D is the de-
nominator of the error

5. dN=2*(reshape(repmat([T(2) T(1) T(1)], 3, 1), 9, 1).*[-P(6) P(3) -P(9)
P(6) -P(3) P(9) -P(5) P(2) -P(8)]’ + reshape(repmat([T(3) T(3) T(2)],
3, 1), 9, 1).*[P(5) -P(2) P(8) -P(4) P(1) -P(7) P(4) -P(3) P(7)]’); dN
is the derivative of the numerator respect all the variable involved; in
example the derivative respect x1 is:
∂N
∂x1

= 2 ∗ ((z1 − z3) ∗ (x3 − x2)− (x1 − x3) ∗ (z3 − z2)) ∗ (z2 − z3) + 2 ∗
((x1 − x3) ∗ (y3 − y2)− (y1 − y3) ∗ (x3 − x2)) ∗ (y3 − y2)

6. dD=2*[-P(1) 0 P(1) -P(2) 0 P(2) -P(3) 0 P(3)]; dD contains the deriva-
tives of the denominator respect to the variable involved:

dD =

 2 ∗ x1 − 2 ∗ x3 0 2 ∗ x3 − 2 ∗ x1 . . .
. . . 2 ∗ y1 − 2 ∗ y3 0 2 ∗ y3 − 2 ∗ y1

. . . 2 ∗ z1 − 2 ∗ z3 0 2 ∗ z3 − 2 ∗ z1



30

7. dF=(dN*D-N*dD’)./(D2); dF contains the derivative of the height er-
ror respect the variables involved. It is constructed through the formula
for the derivation of fractions

8. indici=[i-2:i size(aPoints,1)*ones(1, 3)+((i-2):i) 2*size(aPoints,1)*ones(1,
3)+((i-2):i)]; indici contains the indexes of the column corresponding
to the variables involved in the derivation for the triangle; in this case
indici=[1 2 3 9 10 11 17 18 19]=[x1 x2 x3 y1 y2 y3 z1 z2 z3]

9. Jm3((i-2), indici)=dF’; the previous calculated terms are posed in the
correct position on the Jacoban matrix

31

3 Project implementation

In this section the entire structure of the implementation will be briefly de-
scribed.

Figure 10 shows the interactions between the implemented functions.

Figure 10: Project functions and interactions

batch is the script to be called to start the project. It loads θ and I im-
ages, the points correspondences (loaded by file data) and it initializes the
camera calibration matrix, the dataStruct needed by energy function and the
weight each error term must be multiplied per.
performOptimization initializes the initial vector of the minimization and the
structures needed to plot the solutions. Then it runs the minimization by
calling lsqnonlin Matlab function.
For each iteration of the minimization, the energy function is called to com-
pute error and jacobian of the error; moreover, the graphs plotting the solu-
tion are updated, in particular there are five possible graphs to be updated:

32

• plotEnergy: it plots a histogram whose bar represents the error com-
puted by energy function

• plotGrid: it plots image I with the grid resulting by the minimization
(the approximation of I image exploiting the projection of Θ)

• plotProjection: it plots on I image the a priori known points, the ap-
proximated ones (calculated through barycentric coordinates and cam-
era calibration matrix) and the distance between them (as a red line)

• plotSolution: it plots the 3D broken line meaning the structure of the
paper in 3D space

• plotTemplate: it plots the 2D projection of the 3D broken line (the
current form of the template reconstruction)

If the end condition of the minimization is met the program terminates;
otherwise, another step of the minimization is done.

33

4 An example of minimization

In this section, an example of minimization is shown.
θ and I image, with the points correspondences, are shown in Figure 11.

Figure 11: The images used in the example: on the left the template image
and on the right I image

An example of minimization in the case of a broken line build by 5 points
will be described. Since this project is about error determination, the initial
vector has been empirically detected.

In Figures 12, 13 and 14 it is possible to see the situation after 1 iteration,
15 iterations and when the minimization is done.

It is possible to observe how the 3D broken line has been modified by
the minimization and that the most influent error is the one relative to the
triangles heights (this is due to the expression of the error itself, because it
is the difference between two square values).

34

Figure 12: Minimization after 1 iteration

Figure 13: Minimization after 15 iterations

35

Figure 14: Situation at the end of the minimization

36

5 Conclusion

In this document the basis approach for the reconstruction of the surface
of a deformed paper when two opposite paper edges are constrained to be
straight is shown: in particular, aim of the project is the implementation
of a Matlab function calculating an error function and its Jacobian matrix;
since, for performance reason, the code is not intuitive, the function has been
documented in the detail.

Future works will involve the search of an initial vector for the minimiza-
tion and the study of the relative importance the single error terms have,
formulating feasible error weights per which the error terms will be multi-
plied.

References

[1] Pierluigi Taddei, Adrien Bartoli, Template-based Paper Reconstruction
from a Single Image is Well Posed when the Rulings are Parallel

37

	Error contributions
	The objective function
	Barycentric coordinates of template points
	Reprojection error
	Smoothness error
	Lower edge length error
	Upper edge length error
	Height error

	Energy function
	Input and output parameters
	The lsqnonlin function
	Settings of the matrices
	Reprojection error and jacobian
	Smoothness error and jacobian
	Length preservation on lower edge error and jacobian
	Length preservation on upper edge error and jacobian
	Height preservation error and jacobian

	Project implementation
	An example of minimization
	Conclusion

