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Abstract. We present a method to recognize the presence of lung cancer
in individuals by classifying the olfactory signal acquired through an elec-
tronic nose based on an array of MOS sensors. We analyzed the breath of
101 persons, of which 58 as control and 43 suffering from different types
of lung cancer (primary and not) at different stages. In order to find the
components able to discriminate between the two classes ‘healthy’ and
‘sick’ as best as possible and to reduce the dimensionality of the problem,
we extracted the most significative features and projected them into a
lower dimensional space, using Nonparametric Linear Discriminant Anal-
ysis. Finally, we used these features as input to a pattern classification
algorithm, based on Fuzzy k-Nearest Neighbors (Fuzzy k-NN). The ob-
served results, all validated using cross-validation, have been satisfactory
achieving an accuracy of 92.6%, a sensitivity of 95.3% and a specificity of
90.5%. These results put the electronic nose as a valid implementation of
lung cancer diagnostic technique, being able to obtain excellent results
with a non invasive, small, low cost and very fast instrument.
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1 Motivation and Methodology

It has been demonstrated that the presence of lung cancer alters the percentage
of some volatile organic compounds (VOCs) present in the human breath [7],
which may be considered as markers of this disease. This substances can be
detected by an electronic nose, that is an instrument that allows to acquire the
olfactory signal. The electronic nose includes an array of electronic chemical
sensors with partial specificity and an appropriate pattern recognition system
able to recognize simple or complex odors [1].

The main objective of this paper is to demonstrate that it is possible to
recognize individuals affected by lung cancer, analyzing the olfactory signal of
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Fig. 1. Block scheme of an electronic nose.

their breath, by the use of an electronic nose and an appropriate classification
algorithm.

The experiment has been developed within the Italian MILD (Multicentric
Italian Lung Detection) project, promoted by the Istituto Nazionale Tumori of
Milan, Italy. The study has been approved from the Ethical Committee of the
Institute and we asked all volunteers to sign an agreement for the participation
to the study. We analyzed the breath of 101 volunteers, of which 58 healthy
and 43 suffering from different types of lung cancer. In particular 23 of them
have a primary lung cancer, while 20 of them have different kinds of pulmonary
metastasis. Control people do not have any pulmonary disease and have negative
chest CT scan. The breath acquisition has been made by inviting all volunteers to
blow into a nalophan bag of approximately 400cm?. Considering that the breath
exhaled directly from lung is contained only in the last part of exhalation, we
decided to consider only this portion of the breath. We used a spirometer to
evaluate each volunteer exhalation capacity and, at the end of the exhalation,
we diverted the flow into the bag. Finally, the air contained in the bag has been
input to the electronic nose and analyzed. From each bag we took two measures,
obtaining a total of 202 measurements, of which 116 correspond to the breath
of healthy people and 86 to diseased ones.

2 Processing and Classification of the Olfactory Signal

An electronic nose is an instrument able to detect and recognize odors, namely
the volatile organic compounds present in the analyzed substance. It consists
in three principal components (Figure 1): a Gas Acquisition System, a Pre-
processing and Dimensionality Reduction phase and a Classification Algorithm.
In particular the acquisition of the olfactory signal is done through a sensor array
that converts a physical or chemical information into an electrical signal. MOS
sensors are characterized by high sensitivity (in the order of ppb), low cost, high
speed response and a relatively simple electronics. Considering that most of the
VOCs markers of lung cancer are present in the diseased people’s breath in very
small quantities, varying from parts per million to parts per billion, we chose
to use this kind of sensors rather than others. In particular, we used an array
composed of six MOS sensors (developed by SACMI s.c.), that react to gases
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Fig. 2. Example of a typical sensor response.

with a variation of resistance. The VOCs interact with a doped semiconducting
material deposited between two metal contacts over a resistive heating element,
which operates from 200 °C to 400°C. As a VOC passes over the doped oxide
material, the resistance between the two metal contacts changes in proportion to
the concentration of the VOC. The registered signal corresponds to the change
of resistance through time produced by the gas flow [3]. In Figure 2 it is possible

to see a typical response of a MOS sensor. In particular, each measure consists
of three main phases:

1. Before: during this time the instrument inhales the reference air, showing
in its graph a relatively constant curve;

2. During: it is the period in which the electronic nose inhales the analyzed
gas, producing a change of the sensors’ resistance. It is the most important
part of the measurement because it contains informations about how sensors
react to the particular substance;

3. After: during this phase the instrument returns to the reference line.

After the electronic nose has acquired the olfactory signal, the pre-processing
phase begins; its purpose is to reduce the effect of humidity, to normalize the
obtained signal and to manipulate the baseline. The latter transforms the sensor
response w.r.t. its baseline (e.g., response to a reference analyte) for the purposes
of contrast enhancement and drift compensation [2].

After pre-processing, we performed dimensionality reduction to extract the
most relevant information from the signal. We reached this objective through
Features Extraction, Features Selection and Features Projection in a lower di-
mensional space. The first operation extracts those descriptors from the sensors’
responses able to represent data characteristics in the most efficient way. Feature
selection finds, among all possible features, those ones that maximize the infor-
mative components and, thus, the accuracy of classification. In particular, we
applied the non-parametric test of Mann-Whitney-Wilcoxon [11] with a signifi-
cance level equal to o = 0.0001 to select only discriminant descriptors. In order



to evaluate the discriminative ability of the combination of more features, we
performed an Analysis of Variance (ANOVA) [11] and several scatter plots. Let
define R(t) the curve representing the resistance variation during the measure-
ment and Ry the value of the resistance at the beginning of the measurement
(as indicated in Figure 2), we found as the most discriminative features between
the two classes ‘healthy’ and ‘sick’:

— Single Point. It is the minimum value of resistance reached during the
measurement: S = min(R(t));

— Delta. It corresponds to the resistance change of sensors during the mea-
surement: § = Ry — min(R(¢));

— Classic. It is the ratio between the reference line and the minimum value of
resistance reached during the measurement: C' = Ry/ min(R(¢));

— Relative Integral. It is calculated as: I = [ R(t)/(t- Ro);

— Phase Integral. It represents the closed area determined by the plot of the
state graph of the measurement [8]: z = R, y = dR/dt.

After feature selection we performed data projection: we considered Prin-
cipal Component Analysis (PCA) [10] and Nonparametric Linear Discriminant
Analysis (NPLDA) [12], that is based on nonparametric extensions of commonly
used Fisher’s linear discriminant analysis [10]. PCA transforms data in a linear
way projecting features into the directions with maximum variance. It is impor-
tant to notice that PCA does not consider category labels; this means that the
discarded directions could be exactly the most suitable for the classification pur-
pose. This limit can be overcome by NPLDA, which looks for the projection able
to maximize differences between different classes and minimize those intra-class.
In particular, NPLDA removes the unimodal gaussian assumption by computing
the between scatter-matrix S, using local information and the k nearest neigh-
bors rule; as a result of this, the matrix Sy is full-rank, allowing to extract more
that c-1 features (where c is equal to the number of considered classes) and
the projections are able to preserve the structure of the data more closely [12].
As evident from Figure 3, NPLDA is able to separate the projected features
more clearly than PCA, which plot shows a more evident overlap of samples.
This means that NPLDA is more suitable, for the problem considered, in terms
of classification performance. Moreover, the plot and the obtained eigenvalues
clearly indicated that only one principal component is needed.

Once the most representative characteristics are found, it is possible to per-
form the analysis of the data, that, in this case, consists in a pattern recognition
algorithm. In particular, we considered Fuzzy k-Nearest Neighbors (Fuzzy k-NN)
classifier, a variation of the classic k-NN, based on a fuzzy logic approach [13].
The basic idea of k-NN is to assign a sample to the class of the k closest samples
in the training set. This method is able to do a non linear classification, start-
ing from a small number of samples. The algorithm is based on a measure of
the distance (in this case, the Euclidean one) between the normalized features
and it has been demonstrated [10], that the k-NN is formally a non parametric
approximation of the Maximum A Posteriori MAP criterion. The asymptotic
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Fig. 3. The result of dimensionality reduction through PCA on the left and NPLDA
on the right.

performance of this simple and powerful algorithm, is almost optimum: with an
infinite number of samples and setting k=1, the minimum error is never higher
than the double of the Bayesian error (that is the theoretical lower bound reach-
able) [10]. One of the most critical aspects of this method regards the choice of
parameter k with a limited number of samples: if k is too large, then the problem
is too much simplified and the local information loses its relevance. On the other
hand, a too small k£ leads to a density estimation too sensitive to outliers. For
this reason, we decided to consider the Fuzzy k-NN, a variation of the classic
k-NN that assigns a fuzzy class membership to each sample and provides an
output in a fuzzy form. In particular, the membership value of unlabeled sample
x to i*" class is influenced by the inverse of the distances from neighbors and
their class memberships:

k =2

> i b ([l =z |[) =T
k =2
> =1 (lw—zjf)==

where f1;; represents the membership of labeled sample z; to the i*" class. This
value can be crisp or it can be calculated according to a particular fuzzy rule:
in this work we defined a fuzzy triangular membership function with maximum
value at the average of the class and null outside the minimum and maximum
values of it. In this way, the closer the sample j is to the average point of class i,
the closer its membership value p;; will be to 1 and vice versa. The parameter m
determines how heavily the distance is weighted when calculating each neighbor’s
contribution to the membership value [14]; we chose m = 2, but almost the same
error rates have been obtained on these data over a wide range of values of m.

pi(r) = (1)

3 Results and Conclusion

The performance of the classifier has been evaluated through the obtained con-
fusion matrix and performance indexes. Being ‘TruePositive’ (TP) a sick sample



classified as sick, ‘TrueNegative’ (TN) a healthy sample classified as healthy,
‘FalsePositive’ (FP) a healthy sample classified as sick and ‘FalseNegative’ (FN)
a sick sample classified as healthy, performance indexes are defined as:

— Accuracy (Non Error Rate NER)=(TP+TN)/(TP+ FP+ TN + FN);
— Sensitivity (True Positive Rate TPR)=(T'P)/(TP + F'N);

— Specificity (True Negative Rate TNR)=(T'N)/(T'N + FP);

— Precision w.r.t. diseased people (PRECpos)=(TP)/(TP + FP);

— Precision w.r.t. healthy people (PRECNgc)=(TN)/(T'N + FN).

To obtain indexes able to describe in a reliable way the performances of the
algorithm, it is necessary to evaluate these parameters on new and unknown
data, validating the obtained results. Considering the not so big dimension of
population and that for every person we had two samples, we opted for a modified
Leave-One-Out approach: each test set is composed by the pair of measurements
corresponding to the same person, instead of a single measure as would be in the
normal Leave-One-Out method. Doing this way, we avoided that one of these
two measures could belong to the training set, while using the other in the test
set. In order to deeply understand the relevance of the obtained performance
indexes, we calculated the corresponding confidence intervals, which lower and
upper bounds are defined as:
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where X is the registered index value, n is the number of the degrees of
freedom, o is the standard deviation and ts¢ is the quantile of the t-student
distribution corresponding to the degrees of freedom-1 of the problem.

Results obtained by Fuzzy k-NN are very satisfactory, leading to an accu-
racy of 92.6%. The confusion matrix obtained by this algorithm is shown in
Table 1(a), where elements along the principal diagonal represent respectively
the TruePositive and the TrueNegative values, while those off-diagonal are re-
spectively the FalseNegative and the FalsePositive values. Performance indexes
and their corresponding confidence intervals (set CI=95%), are reported in Ta-
ble 1(b). A relevant consideration regards the robustness of Fuzzy k-NN to k
changes: we considered different values of k, but the algorithm demonstrated to
be very robust to these changes, keeping its results invariant.

In order to prove the effectiveness of Fuzzy k-NN for the considered problem,
we evaluated also other families of classifiers: in particular we considered perfor-
mance achieved by the classic k-NN, by a feedforward artificial neural network
(ANN) and by two classifiers based, respectively, on linear and quadratic dis-
criminant functions. All obtained results were comparable or worst than those
achieved by Fuzzy k-NN in terms of average accuracy. Considering the single in-
dexes we noticed that sensitivity and precision w.r.t healthy people were higher
using Fuzzy k-NN classifier. This consideration is very important because in di-
agnosis sensitivity is more relevant than specificity because it is more important
to recognize correctly a sick person instead of a healthy one; in the same way,



Table 1. Confusion matrix (a) and performance indexes (b) obtained from Fuzzy k-NN
algorithm (k=1,3,5,9,101).

(a) (b)
CONFUSION  |ESTIMATED LABELS Indexes |Average Index|Confidence Interval

MATRIX Positive| Negative (CT = 95%)
TRUE | Positive| 82 4 Accuracy 92.6% [88.5-96.7]
LABELS | Negative| 11 105 Sensitivity 95.3% [91.8-98.9]
Specificity 90.5% [86.0-95.0]

PRECpos 88.2% [82.3-94.1]

PRECNrG 96.3% [93.2-99.4]

Table 2. Comparison of lung cancer diagnosis performance and corresponding con-
fidence intervals (set CI=95%) reached by the electronic nose presented in this work
and current diagnostic techniques. Data from [9]. Note that results regarding CAT and
PET have been obtained from a different dataset than the one analyzed by the E-Nose.

| | Accuracy | Sensitivity | Speciﬁcity|PRECp()5 |PRECNEG |

CAT Nd 75% 66% Nd Nd
Confidence Interval [60-90] [55-77]

PET Nd 91% 86% Nd Nd
Confidence Interval [81-100] [78- 94]

E-Nose 92.6% 95.3% 90.5% 88.2% 96.3%
Confidence Interval|[88.5-96.7]|[91.8-98.9]]|[86.0-95.0] | [82.3-94.1] | [93.2-99.4]

precision w.r.t. negative samples is more relevant than precision w.r.t. positive
ones, because it is worse to classify a person as healthy when he or she is ac-
tually sick, than the opposite. Moreover the robustness showed by the Fuzzy
k-NN’s to k changes is not verified in the classic k-NN, that lead to different
results according to different values of k. However, performing a Student’s t-test
between all pair of classifiers, no relevant differences emerged; this means that
implemented classifiers’ results are comparable for the problem considered.

The use of an electronic nose as lung cancer diagnostic tool is reasonable if
it gives some advantage compared to current lung cancer diagnostic techniques,
namely Computed Axial Tomography (CAT) and Positron Emission Tomogra-
phy (PET). Not only this is verified in terms of performance, as illustrated in
Table 2, but also because the electronic nose, unlike the classical approaches, is
a low cost, robust, small (and thus, eventually portable), very fast and, above
all, non invasive instrument.

In literature there are three other main research works regarding lung cancer
diagnosis by an electronic nose [4-6]. Accuracy indexes obtained from these works
were respectively equal to 90.32%, 88.16% and 80%. Moreover, in [5] and [6], no
cross-validation techniques has been applied to obtain such results; this means
that results have been obtained from one realization and, therefore, they are not
necessarily representative of the real generalization capability of the classifier.



An ambitious research prospective regards the individuation of risk factors
connected to lung cancer (as smoke or food). Involving a larger population and
partitioning it according to different disease stages, it would be possible to study
the possibility of early diagnosis, that is the most important prospective of re-
search that this work should follow.
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