Difference between revisions of "Master Level Course Projects"
(→Computer Vision and Image Analysis) |
|||
Line 35: | Line 35: | ||
* Geometry/Image processing | * Geometry/Image processing | ||
− | |start= | + | |start= now |
|number=2-3 | |number=2-3 | ||
|cfu=2.5-15 | |cfu=2.5-15 | ||
Line 44: | Line 44: | ||
<!--==== E-Science ====--> | <!--==== E-Science ====--> | ||
− | |||
==== Affective Computing ==== | ==== Affective Computing ==== |
Revision as of 14:37, 6 October 2008
Here you can find a list of project proposals for the courses of "Laboratorio di Intelligenza Artificiale e Robotica" (5 CFU for each student) and "Soft Computing" (1 CFU for each student)
Computer Vision and Image Analysis
Title: | Environment Monitoring | |
---|---|---|
Description: | The goal of this project is to develop a video surveillance system to track in 3D vehicles or people.
The idea is to use one or more calibrated camera to estimate the position and the trajectories of the moving objects in the scene. The skills required for this project are:
The project can be turned into a thesis extending the algorithm for a generic outdoor environment. | |
Tutor: | Matteo Matteucci (matteucci-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 2-3 | |
CFU: | 10-15 |
Title: | Visual Merchandising | |
---|---|---|
Description: | The goal of this project is to develop algorithms to count the number of products on the shelves of a market.
The idea is to use a calibrated camera to recognize the shelves, estimate the scale and improve the image quality. The skills required for this project are:
| |
Tutor: | Matteo Matteucci (matteucci-AT-elet-DOT-polimi-DOT-it) | |
Start: | now | |
Number of students: | 2-3 | |
CFU: | 2.5-15 |
Affective Computing
Title: | Affective VideoGames | |
---|---|---|
Description: | The goal of this activity is to develop an interactive video game (Car game, Shoot them up, Strategic game ..) able to adapt its behaviour in order to maximize your enjoyment. The game will measure your excitement by analizing your biological signals, which mirror your emotional state. The system will be able to adjust some parameters (i.e difficulty of car game circuits, opponets strength ...) in order to keep you egnagemet constant: "In your flow zone!".
Project phases:
These projects allow to experiment with biological-data acquisition tools and videogames design. Each project consists on the realization of one or more phases depending on the difficulty/cfu to be achieved and to the competences of the candidate(s) | |
Tutor: | Cristiano Alessandro (alessandro-AT-elet-DOT-polimi-DOT-it), Simone Tognetti (togetti-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 1 to 3 | |
CFU: | 2.5 to 20 |
Title: | Affective recognition in multimedia contexts | |
---|---|---|
Description: | The goal of this activity is to develop an interactive multimedia application (advertisement, e-learning, reccomenadation system) able to capture your emotional state (interests, excitement, anger, joy) while whatching to images, sounds etc. The application will measure your excitement by analizing your biological signals, which mirror your emotional state. The system could be used to give feedback on the quality of multimedia content (i.e goodness of the advertisement, enjoyment of the movie ...)
Project phases:
These projects allow to experiment with biological-data acquisition tools and multimedia application design. The project consists on the realization of one or more phases depending on the difficulty/cfu to be achieved and to the competences of the candidate(s) | |
Tutor: | Cristiano Alessandro (alessandro-AT-elet-DOT-polimi-DOT-it), Simone Tognetti (togetti-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 1 to 3 | |
CFU: | 2.5 to 20 |
Title: | Affective robotics | |
---|---|---|
Description: | The goal of this activity is to develop an rehabilitation robotic game able to capture your emotional state (interests, excitement, anger, joy, stress) while intereacting with the robot. The application will measure your excitement by analizing your biological signals, which mirror your emotional state. The system could be used to adapt the therapy (executed by the game) according to the patien's needs. We believe the quality of the theraphy is related to the subject's emotional state. The long term goal is to keep the user into a specific emotional state in order to maximize the theraphy efficacy.
Project phases:
These projects allow to experiment with biological-data acquisition tools, robots and videogame design. The project consists on the realization of one or more phases depending on the difficulty/cfu to be achieved and to the competences of the candidate(s) | |
Tutor: | Cristiano Alessandro (alessandro-AT-elet-DOT-polimi-DOT-it), Simone Tognetti (togetti-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 1 to 3 | |
CFU: | 2.5 to 20 |
Title: | Driving companions | |
---|---|---|
Description: | The goal of this activity is to develop an application that is able to capture your emotional state (stress, attention level .. ) while driving standard cars. The application will measure the driver's stress level by analizing his biological signals, which mirror the phisiological state, and could be used to give feedbacks to the driver in dangerous situations.
Project phases:
These projects allow to experiment with biological-data acquisition tools, robots and videogame design. The project consists on the realization of one or more phases depending on the difficulty/cfu to be achieved and to the competences of the candidate(s) | |
Tutor: | Cristiano Alessandro (alessandro-AT-elet-DOT-polimi-DOT-it), Simone Tognetti (togetti-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 1 to 3 | |
CFU: | 2.5 to 20 |
Machine Learning
Title: | Reinforcement Learning Competition | |
---|---|---|
Description: | This project has the goal of participating to (and possibly winning ;)) the 2009 Reinforcement Learning competition. To have an idea of what participate to such a competition means you can have a look at the website of the 2008 RL competition.
The problems that will be proposed are still unknown. As soon as the domains will be published, the work will start by analyzing their main characteristics and, then we will identify which RL algorithms are most suited for solving such problems. After an implementation phase, the project will required a long experimental period to tune the parameters of the learning algorithms in order to improve the performance as much as possible. | |
Tutor: | Marcello Restelli (restelli-AT-elet-DOT-polimi-DOT-it) | |
Start: | January, 2009 | |
Number of students: | 2-4 | |
CFU: | 10-20 |
Robotics
Title: | Robot games | |
---|---|---|
Description: | The goal of this activity is to develop an interactive game with robots using commercial devices such as the WII Mote (see the Robogames page)
Projects are available in different areas:
These projects allow to experiment with real mobile robots and real interaction devices. The project can be turned into a thesis by producing a new game and robot. | |
Tutor: | Andrea Bonarini (bonarini-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 1-2 | |
CFU: | 5-12.5 |