Difference between revisions of "BCI based on Motor Imagery"

From AIRWiki
Jump to: navigation, search
m
Line 42: Line 42:
  
 
A Brain Computer Interface (BCI), also called Brain Machine Interface (BMI), is an advanced communication pathway that can allow an individual to control an external device, such as a wheelchair or a cursor on a computer, using signals measured from the brain (e.g., electroencephalography EEG). Research in this direction results of particular interest when addressed to totally paralyzed people. Using the mu and beta rhythms people has learnt to control their brain activity and thus to control external devices, such as a wheelchair, a cursor on a screen etc. We want to develop a system able to allow users to control the movement of an external device, controlling his/her mu or beta rhythms.  
 
A Brain Computer Interface (BCI), also called Brain Machine Interface (BMI), is an advanced communication pathway that can allow an individual to control an external device, such as a wheelchair or a cursor on a computer, using signals measured from the brain (e.g., electroencephalography EEG). Research in this direction results of particular interest when addressed to totally paralyzed people. Using the mu and beta rhythms people has learnt to control their brain activity and thus to control external devices, such as a wheelchair, a cursor on a screen etc. We want to develop a system able to allow users to control the movement of an external device, controlling his/her mu or beta rhythms.  
 
 
== '''Part 3: Implementation of an EOG artifacts filter''' ==
 
 
==== Students currently working on the project ====
 
* [[User:FabioBeltramini | Fabio Beltramini]] (bachelor student)
 
 
==== Filter algorithm description ====
 
 
  
  

Revision as of 13:41, 22 October 2008

Part 1: Project profile

Project name

BCI based on Motor Imagery

Project short description

This project is aimed is to control an external device through the analysis of brain waves measured on the human scalp.

Dates

Start date: 01/05/2008

End date:

Website(s)

http://airlab.elet.polimi.it/index.php/airlab/theses_lab_projects/brain_computer_interfaces_based_on_motor_imagery

People involved

Project head(s)
Other Politecnico di Milano people
Students currently working on the project

Laboratory work and risk analysis

Laboratory work for this project will be mainly performed at AIRLab-IIT/Lambrate. The main activity consists in the acquisition of brain signals through an EEG amplifier for on-line or off-line processing. This is a potentially risky activity since there is an electrical instrumentation that is in direct contact with the human body. It is thus important to keep the system isolated from the power line. The EEG amplifier (as all biomedical instrumentations) is certified by the vendor to be isolated and the acquired data are transferred to the PC using an optic fiber connection . Anyhow for increased safety the PC and any other electronic device connected to the system must be disconnected from the power line. Standard safety measures described in Safety norms will be followed.

Part 2: Project description

A Brain Computer Interface (BCI), also called Brain Machine Interface (BMI), is an advanced communication pathway that can allow an individual to control an external device, such as a wheelchair or a cursor on a computer, using signals measured from the brain (e.g., electroencephalography EEG). Research in this direction results of particular interest when addressed to totally paralyzed people. Using the mu and beta rhythms people has learnt to control their brain activity and thus to control external devices, such as a wheelchair, a cursor on a screen etc. We want to develop a system able to allow users to control the movement of an external device, controlling his/her mu or beta rhythms.


Part 4: References

  • Control of two-dimensional movement signals by a noninvasive brain-computer interface in humans, Wolpaw J.R., McFarland J., PNAS, vol. 101, no. 51, december 2004, pages 17849-17854.
  • Brain Computer interfaces for communication and control, Wolpaw J.R., Birbaumer N., McFarland D., Pfurtsheller G., Vaughan T., Clinical Neurophysiology 113, 2002, 767-791
  • EEG based communication: prospects and problems, Vaughan T., Wolpaw J.R., Donchin E., IEEE transactions on rehabilitation engineering, vol. 4, no. 4, december 1996, pages 425-430.


Links