Master Level Theses
Here you can find proposals for master thesis (20 CFU for each student)
Contents
BioSignal Analysis
Analysis of the Olfactory Signal
Title: | Computational Intelligence techniques to analyse the olfactory signal acquired by an electronic nose for cancer diagnosis | |
---|---|---|
Description: | The electronic nose is an instrument able to detect and recognize odors, that is the volatile substances in the atmosphere or emitted by the analyzed substance. This device can react to a gas substance by providing signals that can be analyzed to classify the input. It is composed of a sensor array (MOS sensors, in our case) and a pattern classification system based on machine learning techniques. Each sensor reacts in a different way to the analyzed substance, providing multidimensional data that can be considered as a unique olfactory blueprint of the analyzed substance. We have already tested the use of the electronic nose as diagnostic tool for lung cancer; boosted from the very satisfactory results that we have achieved by these analysis, we want to investigate the possibility of diagnosing other types of cancer and to improve the current computation intelligence techniques.
The project is done in collaboration with the Istituto dei Tumori, Milano.
| |
Tutor: | Andrea Bonarini (email), Matteo Matteucci (email), Rossella Blatt (email) | |
Start: | Anytime (a new acquisition phase will start in March) | |
Number of students: | 1-2 | |
CFU: | 20 |
Sleep Staging
Title: | Development of a computer-assisted CAP (Sleep cyclic alternating pattern) scoring method | |
---|---|---|
Description: | In 1985, Terzano describes for the first time the Cyclic Alternating Pattern [1] during sleep and, nowadays, CAP is widely accepted by the medical community as basic analysis of sleep. The CAP evaluation is of fundamental importance since it represents the mechanism developed by the brain evolution to monitor the inner and outer world and to assure the survival during sleep. However, visual detection of CAP in polisomnography (i.e., the standard procedure) is a slow and time-consuming process. This limiting factor generates the necessity of new computer-assisted scoring methods for fast CAP evaluation. This thesis deals with the development of a Decision Support System for CAP scoring based on features extraction at multi-system level (by statistical and signal analysis) and Pattern Recognition or Machine Learning approaches. This may allow the automatic detection of CAP sleep and could be integrated, through reinforcement learning techniques, with the corrections given by physicians.
| |
Tutor: | Matteo Matteucci (email), Martin Mendez (email), Anna Maria Bianchi (email), Mario Terzano (Ospedale di Parma) | |
Start: | Anytime | |
Number of students: | 1-2 | |
CFU: | 20 |
Brain-Computer Interface
Title: | Recognition of the user's focusing on the stimulation matrix | |
---|---|---|
Description: | A P300-based BCI stimulates the user continuously, and the detection of a P300 designates the choice of the user. When the user is not paying attention to the interface, false positives are likely. The objective of this work is to avoid this problem; the analysis of the electroencephalogram (EEG) over the visual cortex (and possibly an analysis of P300s or of other biosignals) should tell when the user is looking at the interface.
| |
Tutor: | Matteo Matteucci (email), Bernardo Dal Seno (email) | |
Start: | Anytime | |
Number of students: | 1-2 | |
CFU: | 20 |
Title: | Creation of new EEG training by introduction of noise | |
---|---|---|
Description: | A BCI must be trained on the individual user in order to be effective. This training phase require recording data in long sessions, which is time consuming and boring for the user. The aim of this project is to develop algorithm to create new training EEG (electroencephalography) data from existing ones, so as to speed up the training phase.
| |
Tutor: | Matteo Matteucci (email), Bernardo Dal Seno (email) | |
Start: | Anytime | |
Number of students: | 1 | |
CFU: | 20 |
Title: | Real-time removal of ocular artifact from EEG | |
---|---|---|
Description: | In a BCI based on electroencephalogram (EEG), one of the most important sources of noise is related to ocular movements. Algorithms have been devised to cancel the effect of such artifacts. The project consists in the in the implementation in real time of an existing algorithm (or one newly developed) in order to improve the performance of a BCI.
| |
Tutor: | Matteo Matteucci (email), Bernardo Dal Seno (email) | |
Start: | Anytime | |
Number of students: | 1 | |
CFU: | 10-20 |
Title: | Aperiodic visual stimulation in a VEP-based BCI | |
---|---|---|
Description: | Visual-evoked potentials (VEPs) are a possible way to drive the a BCI. This projects aims at maximizing the discrimination between different stimuli.
| |
Tutor: | Matteo Matteucci (email), Bernardo Dal Seno (email) | |
Start: | Anytime | |
Number of students: | 1 | |
CFU: | 20 |
Title: | Driving an autonomous wheelchair with a P300-based BCI | |
---|---|---|
Description: | This project pulls together different Airlab projects with the aim to drive an autonomous wheelchair (LURCH) with a BCI, through the development of key software modules. The work will be validated with live experiments.
| |
Tutor: | Matteo Matteucci (email), Bernardo Dal Seno (email) | |
Start: | November 2008 | |
Number of students: | 1 | |
CFU: | 5-20 |
Title: | Online automatic tuning of the number of repetitions in a P300-based BCI | |
---|---|---|
Description: | In a P300-based BCI, (visual) stimuli are presented to the user, and the intention of the user is recognized when a P300 potential is recognized in response of the desired stimulus. In order to improve accuracy, many stimulation rounds are usually performed before making a decision. The exact number of repetitions depends on the user and the goodness of the classifier, but it is usually fixed a-priori. The aim of this project is to adapt the number of repetitions to changing conditions, so as to achieve the maximum accuracy with the minimum time.
The work will be validated with live experiments.
| |
Tutor: | Matteo Matteucci (email), Bernardo Dal Seno (email) | |
Start: | Anytime | |
Number of students: | 1 | |
CFU: | 5-20 |
Machine Learning
Title: | Reinforcement Learning in Poker | |
---|---|---|
Description: | In this years, Artificial Intelligence research has shifted its attention from fully observable environments such as Chess to more challenging partially observable ones such as Poker.
Up to this moment research in this kind of environments, which can be formalized as Partially Observable Stochastic Games, has been more from a game theoretic point of view, thus focusing on the pursue of optimality and equilibrium, with no attention to payoff maximization, which may be more interesting in many real-world contexts. On the other hand Reinforcement Learning techniques demonstrated to be successful in solving both fully observable problems, single and multi-agent, and single-agent partially observable ones, while lacking application to the partially observable multi-agent framework. This research aims at studying the solution of Partially Observable Stochastic Games, analyzing the possibility to combine the Opponent Modeling concept with the well proven Reinforcement Learning solution techniques to solve problems in this framework, adopting Poker as testbed. | |
Tutor: | Marcello Restelli (restelli-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 1-2 | |
CFU: | 20-40 |
Title: | EyeBot | |
---|---|---|
Description: | TORCS is a state-of-the-art open source racing simulator that represents an ideal bechmark for machine learning techniques. We already organized two successfull competitions based on TORCS where competitors have been asked to develop a controller using their preferred machine learning techniques. So far, the controller developed for TORCS used as input only information extracted directly from the state of the game. The goal of this project is to extend the existing controller API (see here) to use the visual information (e.g. the screenshots of the game) as input to the controllers. A successfull project will include both the development of the API and some basic imaga preprocessing to extract information from the images. | |
Tutor: | Daniele Loiacono (loiacono-AT-elet-DOT-polimi-DOT-it), Alessandro Giusti (giusti-AT-elet-DOT-polimi-DOT-it), and Pierluigi Taddei (taddei-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 1 to 2 | |
CFU: | 20 |
Title: | SmarTrack | |
---|---|---|
Description: | The generation of customized game content for each player is an attractive direction to improve the game experience in the next-generation computer games. In this scenario, Machine Learning could play an important role to provide automatically such customized game content.
The goal of this project is to apply machine learning techniques for the generation of customized tracks in TORCS, a state-of-the-art open source racing simulator. The project include different activities: the automatic generation of tracks, the section of relevant features to characterize a track and the analysis of an interest measure. | |
Tutor: | Daniele Loiacono (loiacono-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 1 to 2 | |
CFU: | 20 |
Title: | Automatic generation of domain ontologies | [[Image:|center|300px]] |
---|---|---|
Description: | This thesis to be developed together with Noustat S.r.l., who are developing research activities directed toward the optimization of knowledge management services, in collaboration with another company operating in this field. This project is aimed at removing the ontology building bottleneck, long and expensive activity that usually requires the direct collaboration of a domain expert. The possibility of automatic building the ontology, starting from a set of textual documents related to a specific domain, is expected to improve the ability to provide the knowledge management service, both by reducing the time-to-application, and by increasing the number of domains that can be covered. For this project, unsupervised learning methods will be applied in sequence, exploiting the topological properties of the ultra-metric spaces that emerge from the taxonomic structure of the concepts present in the texts, and associative methods will extend the concept network to lateral, non-hierarchical relationships. | |
Tutor: | Matteo Matteucci (email), Andrea Bonarini (email) | |
Start: | before November 30th | |
Number of students: | 1-2 | |
CFU: | 20 |
Affective Computing
Ontologies and Semantic Web
Title: | Automatic generation of domain ontologies | |
---|---|---|
Description: | This thesis to be developed together with Noustat S.r.l., who are developing research activities directed toward the optimization of knowledge management services, in collaboration with another company operating in this field. This project is aimed at removing the ontology building bottleneck, long and expensive activity that usually requires the direct collaboration of a domain expert. The possibility of automatic building the ontology, starting from a set of textual documents related to a specific domain, is expected to improve the ability to provide the knowledge management service, both by reducing the time-to-application, and by increasing the number of domains that can be covered. For this project, unsupervised learning methods will be applied in sequence, exploiting the topological properties of the ultra-metric spaces that emerge from the taxonomic structure of the concepts present in the texts, and associative methods will extend the concept network to lateral, non-hierarchical relationships. | |
Tutor: | Matteo Matteucci (email), Andrea Bonarini (email) | |
Start: | before November 30th | |
Number of students: | 1-2 | |
CFU: | 20 |
Robotics
Title: | Robot games | |
---|---|---|
Description: | The goal of this activity is to develop an interactive game with robots using commercial devices such as the WII Mote (see the Robogames page)
Projects are available in different areas:
These projects allow to experiment with real mobile robots and real interaction devices. Parts of these projects can be considered as course projects. These projects can also be extended to cover course projects. | |
Tutor: | Andrea Bonarini (bonarini-AT-elet-DOT-polimi-DOT-it) | |
Start: | Anytime | |
Number of students: | 1-2 | |
CFU: | 7.5-20 |