Robotics Teaching Assistant lectures (Como)
Materials used in the Tutorial part of Robotics course (academic year 2011-2012, Como)
The latex sources and Matlab code are also available on the svn
svn co https://svn.ws.dei.polimi.it/airlab/Courses/Robotics_como
1st lecture
- Homogeneous coordinates for points in 2D and 3D
- Rotation and translation in 2D and 3D homogeneous coordinate
- Transformation inversion and composition.
- Lines in 2D homogeneous coordinates, duality with points, line intersection and line joining two points
- The line at the infinity (2D)
- Brief introduction to conics
- 2D projective transformation introduction
Slides with animations File:Robotics-ceriani-ese-01-anim.pdf
Handout File:Robotics-ceriani-ese-01-handout.pdf
2nd lecture
- Projective 2D transformations (Homographies) of points, lines and conics
- Homography estimation and image rectification
- Hierarchy of transformations (isometries, similarities, affine, homographies)
- Vanishing points
- Parametric lines and Cross Ratio (with exercize)
- Affine reconstruction
- 3D projective geometry: points and planes, quadrics, transformations, vanishing points and lines
- Brief recall to art and usage of vanishing points
- Some videos and images examples
- Image definition, Camera system, Thin lenses approximation, Fresnel law, depth of field
- Pin hole model, Intrinsic camera matrix
- Extra exercises with cross ratio
Slides with animations File:Robotics-ceriani-ese-02-anim.pdf
Download all videos from here [1] and place them in a folder named "videos" in the same folder of the slide file
Video are played in the pdf file in Windows using Acrobat Reader, in Linux using Okular
Handout File:Robotics-ceriani-ese-02-handout.pdf
Matlab code File:Robotics-matlab-02.zip
3th lecture
- Pin hole model recall
- Projection Matrix
- Interpretation line
- Image of origin and vanishing points
- Angle of view
- Radial and tangential distortion model
- Camera calibration (Matlab Camera Calibration Toolbox [2])
- Epipolar geometry
- Fundamental matrix
- Features in image
- Thresholding, Filtering, Smoothing, Gradient
- Canny edge detector
- Hough transformation for lines extraction
- Corners
- Template matching: patches and SIFT
- Final Exercize on Camera Geometry
Slides with animations File:Robotics-ceriani-ese-03-anim.pdf
Handout File:Robotics-ceriani-ese-03-handout.pdf
Matlab code File:Robotics-matlab-03.zip
4th lecture
- Mobile robot localization
- Taxonomy of localization problems
- Probability recall
- Bayes formula and bayes filter
- Markov Localization
Slides with animations File:Robotics-ceriani-ese-04-anim.pdf
Handout File:Robotics-ceriani-ese-04-handout.pdf
Matlab code File:Robotics-matlab-04.zip
5th lecture
- Kalman Filter
- Kalman Filter example: falling body
- Extended Kalman filter
- Extended Kalman filter localization
- Correspondances, data association and Mahalanobis distance
- Qualitative introduction to Monte Carlo Localization and Particle filters
Slides with animations File:Robotics-ceriani-ese-05-anim.pdf
Handout File:Robotics-ceriani-ese-05-handout.pdf
Matlab code File:Robotics-matlab-05.zip
6th lecture
- Introduction to SLAM
- EKF-SLAM: motion model, addition, measurement
- Data associaton: Examples with JCBB
- Visual SLAM & Monocular SLAM
- Large scale SLAM issues
- Some videos...
- SLAM with OmniDirectionalCamera
- PTAM, Laser based SLAM
Slides with animations File:Robotics-ceriani-ese-06-anim.pdf.zip
Download all videos from here [3] and place them in a folder named "videos" in the same folder of the slide file
Video are played in the pdf file in Windows using Acrobat Reader, in Linux using Okular
Handout File:Robotics-ceriani-ese-06-handout.pdf.zip
Matlab code File:Robotics-matlab-06.zip (this material is from [4])